Edvardson Shimon, Tian Guoling, Cullen Hayley, Vanyai Hannah, Ngo Linh, Bhat Saiuj, Aran Adi, Daana Muhannad, Da'amseh Naderah, Abu-Libdeh Bassam, Cowan Nicholas J, Heng Julian Ik-Tsen, Elpeleg Orly
Neuropediatric Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel.
Monique and Jacques Roboh Department of Genetic Research, Hadassah, Hebrew University Medical Center Jerusalem, Jerusalem, Israel.
Hum Mol Genet. 2016 Nov 1;25(21):4635-4648. doi: 10.1093/hmg/ddw292.
Mutation in a growing spectrum of genes is known to either cause or contribute to primary or secondary microcephaly. In primary microcephaly the genetic determinants frequently involve mutations that contribute to or modulate the microtubule cytoskeleton by causing perturbations of neuronal proliferation and migration. Here we describe four patients from two unrelated families each with an infantile neurodegenerative disorder characterized by loss of developmental milestones at 9–24 months of age followed by seizures, dystonia and acquired microcephaly. The patients harboured homozygous missense mutations (A475T and A586V) in TBCD, a gene encoding one of five tubulin-specific chaperones (termed TBCA-E) that function in concert as a nanomachine required for the de novo assembly of the α/β tubulin heterodimer. The latter is the subunit from which microtubule polymers are assembled. We found a reduced intracellular abundance of TBCD in patient fibroblasts to about 10% (in the case of A475T) or 40% (in the case of A586V) compared to age-matched wild type controls. Functional analyses of the mutant proteins revealed a partially compromised ability to participate in the heterodimer assembly pathway. We show via in utero shRNA-mediated suppression that a balanced supply of tbcd is critical for cortical cell proliferation and radial migration in the developing mouse brain. We conclude that TBCD is a novel functional contributor to the mammalian cerebral cortex development, and that the pathological mechanism resulting from the mutations we describe is likely to involve compromised interactions with one or more TBCD-interacting effectors that influence the dynamics and behaviour of the neuronal cytoskeleton.
已知越来越多的基因发生突变会导致或促成原发性或继发性小头畸形。在原发性小头畸形中,遗传决定因素通常涉及通过引起神经元增殖和迁移紊乱来促成或调节微管细胞骨架的突变。在此,我们描述了来自两个无亲缘关系家庭的四名患者,他们都患有婴儿期神经退行性疾病,其特征为在9至24个月大时发育里程碑丧失,随后出现癫痫、肌张力障碍和后天性小头畸形。这些患者在TBCD基因中携带纯合错义突变(A475T和A586V),该基因编码五种微管蛋白特异性伴侣蛋白(称为TBCA - E)之一,这些伴侣蛋白协同作用,作为α/β微管蛋白异二聚体从头组装所需的纳米机器。后者是组装微管聚合物的亚基。我们发现,与年龄匹配的野生型对照相比,患者成纤维细胞中TBCD的细胞内丰度降低至约10%(A475T突变情况下)或40%(A586V突变情况下)。对突变蛋白的功能分析显示,其参与异二聚体组装途径的能力部分受损。我们通过子宫内shRNA介导的抑制作用表明,tbcd的平衡供应对于发育中的小鼠大脑皮质细胞增殖和径向迁移至关重要。我们得出结论,TBCD是哺乳动物大脑皮质发育的一种新型功能性贡献因子,我们所描述的突变导致的病理机制可能涉及与一种或多种影响神经元细胞骨架动力学和行为的TBCD相互作用效应器的相互作用受损。