Suppr超能文献

人类行走中足部偏航的稳定特性。

The stabilizing properties of foot yaw in human walking.

作者信息

Rebula John R, Ojeda Lauro V, Adamczyk Peter G, Kuo Arthur D

机构信息

University of Michigan, Ann Arbor, MI, USA; Intelligent Prosthetic Systems LLC, Madison, WI, USA.

University of Michigan, Ann Arbor, MI, USA.

出版信息

J Biomech. 2017 Feb 28;53:1-8. doi: 10.1016/j.jbiomech.2016.11.059. Epub 2016 Dec 1.

Abstract

Humans perform a variety of feedback adjustments to maintain balance during walking. These include lateral footfall placement, and center of pressure adjustment under the stance foot, to stabilize lateral balance. A less appreciated possibility would be to steer for balance like a bicycle, whose front wheel may be turned toward the direction of a lean to capture the center of mass. Humans could potentially combine steering with other strategies to distribute balance adjustments across multiple degrees of freedom. We tested whether human balance can theoretically benefit from steering, and experimentally tested for evidence of steering for balance. We first developed a simple dynamic walking model, which shows that bipedal walking may indeed be stabilized through steering-externally rotating the foot about vertical toward the direction of lateral lean for each footfall-governed by linear feedback control. Moreover, least effort (mean-square control torque) is required if steering is combined with lateral foot placement. If humans use such control, footfall variability should show a statistical coupling between external rotation with lateral placement. We therefore examined the spontaneous fluctuations of hundreds of strides of normal overground walking in healthy adults (N=26). We found significant coupling (P=9·10), of 0.54rad of external rotation per meter of lateral foot deviation. Successive footfalls showed a weaker, negative correlation with each other, similar to how a bicycle׳s steering adjustment made for balance must be followed by gradual corrections to resume the original travel direction. Steering may be one of multiple strategies to stabilize balance during walking.

摘要

人类在行走过程中会进行各种反馈调整以保持平衡。这些调整包括侧向脚步落点的放置,以及支撑脚下方压力中心的调整,以稳定侧向平衡。一种较少被认识到的可能性是像骑自行车一样通过转向来保持平衡,自行车的前轮可以转向倾斜的方向以捕捉质心。人类可能会将转向与其他策略相结合,以便在多个自由度上分配平衡调整。我们测试了人类平衡理论上是否能从转向中受益,并通过实验测试了转向保持平衡的证据。我们首先开发了一个简单的动态行走模型,该模型表明双足行走确实可以通过转向——在每次脚步落地时使脚绕垂直轴朝着侧向倾斜的方向向外旋转——并由线性反馈控制来实现稳定。此外,如果将转向与侧向脚步放置相结合,则所需的努力最小(均方控制扭矩)。如果人类使用这种控制,脚步落点的变异性应该在向外旋转与侧向放置之间表现出统计上的耦合。因此,我们研究了健康成年人(N = 26)在正常地面行走数百步的自发波动情况。我们发现存在显著的耦合(P = 9·10),即每侧向脚偏移1米会有0.54弧度的向外旋转。连续的脚步落点之间显示出较弱的负相关,类似于自行车为保持平衡而进行转向调整后必须逐渐进行校正以恢复原来的行进方向。转向可能是行走过程中稳定平衡的多种策略之一。

相似文献

1
The stabilizing properties of foot yaw in human walking.
J Biomech. 2017 Feb 28;53:1-8. doi: 10.1016/j.jbiomech.2016.11.059. Epub 2016 Dec 1.
2
Control of human gait stability through foot placement.
J R Soc Interface. 2018 Jun;15(143). doi: 10.1098/rsif.2017.0816.
3
Active control of lateral balance in human walking.
J Biomech. 2000 Nov;33(11):1433-40. doi: 10.1016/s0021-9290(00)00101-9.
4
Complementary mechanisms for upright balance during walking.
PLoS One. 2017 Feb 24;12(2):e0172215. doi: 10.1371/journal.pone.0172215. eCollection 2017.
7
Modelling strategies supplemental to foot placement for frontal-plane stability in walking.
J R Soc Interface. 2024 Sep;21(218):20240191. doi: 10.1098/rsif.2024.0191. Epub 2024 Sep 4.
8
Does variability of footfall kinematics correlate with dynamic stability of the centre of mass during walking?
PLoS One. 2019 May 31;14(5):e0217460. doi: 10.1371/journal.pone.0217460. eCollection 2019.
9
Direction-dependent control of balance during walking and standing.
J Neurophysiol. 2009 Sep;102(3):1411-9. doi: 10.1152/jn.00131.2009. Epub 2009 Jun 24.
10
Human foot placement and balance in the sagittal plane.
J Biomech Eng. 2009 Dec;131(12):121001. doi: 10.1115/1.4000193.

引用本文的文献

2
The Biomechanical Influence of Step Width on Typical Locomotor Activities: A Systematic Review.
Sports Med Open. 2024 Jul 27;10(1):83. doi: 10.1186/s40798-024-00750-4.
3
Impacts of asymmetric hip rotation angle on gait biomechanics in patients with knee osteoarthritis.
Knee Surg Relat Res. 2024 Jul 14;36(1):23. doi: 10.1186/s43019-024-00226-5.
4
Daily life mobility detects frailty, falls, and functioning in ADT-treated prostate cancer survivors.
Res Sq. 2024 May 30:rs.3.rs-4402624. doi: 10.21203/rs.3.rs-4402624/v1.
5
Stride width and postural stability in frontal gait disorders and Parkinson's disease.
J Neurol. 2024 Jul;271(7):3721-3730. doi: 10.1007/s00415-024-12401-5. Epub 2024 May 10.
6
Mediolateral foot placement control can be trained: Older adults learn to walk more stable, when ankle moments are constrained.
PLoS One. 2023 Nov 1;18(11):e0292449. doi: 10.1371/journal.pone.0292449. eCollection 2023.
7
Asymmetry measures for quantification of mechanisms contributing to dynamic stability during stepping-in-place gait.
Front Neurol. 2023 Apr 20;14:1145283. doi: 10.3389/fneur.2023.1145283. eCollection 2023.
8
Humans plan for the near future to walk economically on uneven terrain.
Proc Natl Acad Sci U S A. 2023 May 9;120(19):e2211405120. doi: 10.1073/pnas.2211405120. Epub 2023 May 1.
9
Optimization of energy and time predicts dynamic speeds for human walking.
Elife. 2023 Feb 13;12:e81939. doi: 10.7554/eLife.81939.

本文引用的文献

3
Two independent contributions to step variability during over-ground human walking.
PLoS One. 2013 Aug 28;8(8):e73597. doi: 10.1371/journal.pone.0073597. eCollection 2013.
4
Measurement of foot placement and its variability with inertial sensors.
Gait Posture. 2013 Sep;38(4):974-80. doi: 10.1016/j.gaitpost.2013.05.012. Epub 2013 Jun 26.
5
Energetic cost of walking with increased step variability.
Gait Posture. 2012 May;36(1):102-7. doi: 10.1016/j.gaitpost.2012.01.014. Epub 2012 Mar 28.
6
Balance responses to lateral perturbations in human treadmill walking.
J Exp Biol. 2010 Aug 1;213(Pt 15):2655-64. doi: 10.1242/jeb.042572.
8
Mechanical and metabolic determinants of the preferred step width in human walking.
Proc Biol Sci. 2001 Oct 7;268(1480):1985-92. doi: 10.1098/rspb.2001.1761.
9
Active control of lateral balance in human walking.
J Biomech. 2000 Nov;33(11):1433-40. doi: 10.1016/s0021-9290(00)00101-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验