Departamento de Biotecnologia, Genética e Biologia Celular da Universidade Estadual de Maringá, Paraná, Brazil.
Departamento de Biotecnologia, Genética e Biologia Celular da Universidade Estadual de Maringá, Paraná, Brazil.
Comp Biochem Physiol C Toxicol Pharmacol. 2017 May;195:27-43. doi: 10.1016/j.cbpc.2017.01.011. Epub 2017 Feb 3.
Several recent studies have elucidated the molecular mechanisms that confer insecticide resistance on insect pests. However, little is known about multiple resistance in red flour beetle (Tribolium castaneum) at molecular level. The multiple resistance is characterized as resistance to different classes of insecticides that have different target sites, and is mediated by several enzymatic systems. In this study, we investigated the biochemical and molecular mechanisms involved in multiple resistance of T. castaneum to bifenthrin (pyrethroid [Pyr]) and pirimiphos-methyl (organophosphate [Org]). We used artificial selection, biochemical and in silico approaches including structural computational biology. After five generations of artificial selection in the presence of bifenthrin (F5Pyr) or pirimiphos-methyl (F5Org), we found high levels of multiple resistance. The hierarchical enzymatic cluster revealed a pool of esterases (E), lipases (LIPs) and laccase2 (LAC2) potentially contributing to the resistance in different ways throughout development, after one or more generations in the presence of insecticides. The enzyme-insecticide interaction network indicated that E2, E3, LIP3, and LAC2 are enzymes potentially required for multiple resistance phenotype. Kinetic analysis of esterases from F5Pyr and F5Org showed that pirimiphos-methyl and specially bifenthrin promote enzyme inhibition, indicating that esterases mediate resistance by sequestering bifenthrin and pirimiphos-methyl. Our computational data were in accordance with kinetic results, indicating that bifenthrin has higher affinity at the active site of esterase than pirimiphos-methyl. We also report the capability of these insecticides to modify the development in T. castaneum. Our study provide insights into the biochemical mechanisms employed by T. castaneum to acquire multiple resistance.
几项最近的研究阐明了使害虫对杀虫剂产生抗性的分子机制。然而,对于红粉甲虫(Tribolium castaneum)在分子水平上的多重抗性知之甚少。这种多重抗性的特征是对具有不同靶标的不同类别的杀虫剂具有抗性,并且由几种酶系统介导。在这项研究中,我们研究了涉及 T. castaneum 对功夫菊酯(拟除虫菊酯[Pyr])和吡虫啉(有机磷[Org])的多重抗性的生化和分子机制。我们使用了人工选择,生化和包括结构计算生物学在内的计算方法。在用功夫菊酯(F5Pyr)或吡虫啉(F5Org)进行了五代人工选择后,我们发现了高水平的多重抗性。分层酶簇揭示了一组酯酶(E),脂肪酶(LIPs)和漆酶 2(LAC2),它们通过不同的方式在不同的发育阶段,在存在杀虫剂的一个或多个世代后,可能有助于抗性。酶-杀虫剂相互作用网络表明,E2、E3、LIP3 和 LAC2 是可能需要多种抗性表型的酶。来自 F5Pyr 和 F5Org 的酯酶的动力学分析表明,吡虫啉和特别功夫菊酯促进了酶的抑制,表明酯酶通过隔离功夫菊酯和吡虫啉来介导抗性。我们的计算数据与动力学结果一致,表明功夫菊酯在酯酶的活性部位比吡虫啉具有更高的亲和力。我们还报告了这些杀虫剂对 T. castaneum 发育的改变能力。我们的研究为 T. castaneum 获得多重抗性所采用的生化机制提供了深入的了解。