Suppr超能文献

苍蝇通过对翅膀和身体运动学的模块化调整来补偿单侧翅膀损伤。

Flies compensate for unilateral wing damage through modular adjustments of wing and body kinematics.

作者信息

Muijres Florian T, Iwasaki Nicole A, Elzinga Michael J, Melis Johan M, Dickinson Michael H

机构信息

Experimental Zoology Group, Wageningen University and Research, Wageningen, The Netherlands; Department of Biology, University of Washington, Seattle, WA, USA.

Department of Biology, University of Washington , Seattle, WA , USA.

出版信息

Interface Focus. 2017 Feb 6;7(1):20160103. doi: 10.1098/rsfs.2016.0103.

Abstract

Using high-speed videography, we investigated how fruit flies compensate for unilateral wing damage, in which loss of area on one wing compromises both weight support and roll torque equilibrium. Our results show that flies control for unilateral damage by rolling their body towards the damaged wing and by adjusting the kinematics of both the intact and damaged wings. To compensate for the reduction in vertical lift force due to damage, flies elevate wingbeat frequency. Because this rise in frequency increases the flapping velocity of both wings, it has the undesired consequence of further increasing roll torque. To compensate for this effect, flies increase the stroke amplitude and advance the timing of pronation and supination of the damaged wing, while making the opposite adjustments on the intact wing. The resulting increase in force on the damaged wing and decrease in force on the intact wing function to maintain zero net roll torque. However, the bilaterally asymmetrical pattern of wing motion generates a finite lateral force, which flies balance by maintaining a constant body roll angle. Based on these results and additional experiments using a dynamically scaled robotic fly, we propose a simple bioinspired control algorithm for asymmetric wing damage.

摘要

我们使用高速摄像技术,研究了果蝇如何补偿单侧翅膀损伤,即一侧翅膀面积损失会影响重量支撑和滚转扭矩平衡。我们的研究结果表明,果蝇通过向受损翅膀一侧滚动身体,并调整完好翅膀和受损翅膀的运动学来控制单侧损伤。为了补偿由于损伤导致的垂直升力降低,果蝇提高了振翅频率。由于频率的增加会提高两翼的拍打速度,这会产生进一步增加滚转扭矩的不良后果。为了补偿这种影响,果蝇增加了受损翅膀的冲程幅度,并提前了受损翅膀内旋和外旋的时间,同时对完好翅膀进行相反的调整。受损翅膀上力的增加和完好翅膀上力的减少共同作用,以保持净滚转扭矩为零。然而,两翼运动的双侧不对称模式会产生一个有限的侧向力,果蝇通过保持恒定的身体滚转角来平衡这个力。基于这些结果以及使用动态缩放机器人果蝇进行的额外实验,我们提出了一种针对不对称翅膀损伤的简单仿生控制算法。

相似文献

1
Flies compensate for unilateral wing damage through modular adjustments of wing and body kinematics.
Interface Focus. 2017 Feb 6;7(1):20160103. doi: 10.1098/rsfs.2016.0103.
2
Body saccades of Drosophila consist of stereotyped banked turns.
J Exp Biol. 2015 Mar;218(Pt 6):864-75. doi: 10.1242/jeb.114280. Epub 2015 Feb 5.
3
Kinematic compensation for wing loss in flying damselflies.
J Insect Physiol. 2016 Feb;85:1-9. doi: 10.1016/j.jinsphys.2015.11.009. Epub 2015 Nov 18.
4
Wing kinematic and aerodynamic compensations for unilateral wing damage in a small phorid fly.
Phys Rev E. 2020 Jan;101(1-1):012412. doi: 10.1103/PhysRevE.101.012412.
5
Aerodynamic damping during rapid flight maneuvers in the fruit fly Drosophila.
J Exp Biol. 2010 Feb 15;213(4):602-12. doi: 10.1242/jeb.038778.
6
The control of wing kinematics and flight forces in fruit flies (Drosophila spp.).
J Exp Biol. 1998;201(3):385-401. doi: 10.1242/jeb.201.3.385.
7
Direct lateral maneuvers in hawkmoths.
Biol Open. 2016 Jan 6;5(1):72-82. doi: 10.1242/bio.012922.
8
The aerodynamics of hovering flight in Drosophila.
J Exp Biol. 2005 Jun;208(Pt 12):2303-18. doi: 10.1242/jeb.01612.
9
The aerodynamics of free-flight maneuvers in Drosophila.
Science. 2003 Apr 18;300(5618):495-8. doi: 10.1126/science.1081944.
10
Wing kinematics measurement and aerodynamics of hovering droneflies.
J Exp Biol. 2008 Jul;211(Pt 13):2014-25. doi: 10.1242/jeb.016931.

引用本文的文献

1
Morphological constraints in hymenopteran forewings limit flight efficiency optimization.
R Soc Open Sci. 2025 Jul 16;12(7):250224. doi: 10.1098/rsos.250224. eCollection 2025 Jul.
2
Passive mechanisms in flying insects and applications in bio-inspired flapping-wing micro air vehicles.
Proc Biol Sci. 2025 Jul;292(2050):20251015. doi: 10.1098/rspb.2025.1015. Epub 2025 Jul 2.
5
Insect Flight: State of the Field and Future Directions.
Integr Comp Biol. 2024 Jul 9;64(2):533-55. doi: 10.1093/icb/icae106.
6
Bio-inspired compensatory strategies for damage to flapping robotic propulsors.
J R Soc Interface. 2024 Jul;21(216):20240141. doi: 10.1098/rsif.2024.0141. Epub 2024 Jul 3.
7
Investigating the Mechanical Performance of Bionic Wings Based on the Flapping Kinematics of Beetle Hindwings.
Biomimetics (Basel). 2024 Jun 6;9(6):343. doi: 10.3390/biomimetics9060343.
8
Machine learning reveals the control mechanics of an insect wing hinge.
Nature. 2024 Apr;628(8009):795-803. doi: 10.1038/s41586-024-07293-4. Epub 2024 Apr 17.
9
Flies adaptively control flight to compensate for added inertia.
Proc Biol Sci. 2023 Oct 11;290(2008):20231115. doi: 10.1098/rspb.2023.1115.
10
Flies trade off stability and performance via adaptive compensation to wing damage.
Sci Adv. 2022 Nov 16;8(46):eabo0719. doi: 10.1126/sciadv.abo0719. Epub 2022 Nov 18.

本文引用的文献

1
EXPERIMENTAL ANALYSES OF WING SIZE, FLIGHT, AND SURVIVAL IN THE WESTERN WHITE BUTTERFLY.
Evolution. 1999 Oct;53(5):1479-1490. doi: 10.1111/j.1558-5646.1999.tb05412.x.
2
The aerodynamics and control of free flight manoeuvres in Drosophila.
Philos Trans R Soc Lond B Biol Sci. 2016 Sep 26;371(1704). doi: 10.1098/rstb.2015.0388.
3
Controlling roll perturbations in fruit flies.
J R Soc Interface. 2015 Apr 6;12(105). doi: 10.1098/rsif.2015.0075.
4
Body saccades of Drosophila consist of stereotyped banked turns.
J Exp Biol. 2015 Mar;218(Pt 6):864-75. doi: 10.1242/jeb.114280. Epub 2015 Feb 5.
5
Strategies for the stabilization of longitudinal forward flapping flight revealed using a dynamically-scaled robotic fly.
Bioinspir Biomim. 2014 Jun;9(2):025001. doi: 10.1088/1748-3182/9/2/025001. Epub 2014 May 22.
6
Flies evade looming targets by executing rapid visually directed banked turns.
Science. 2014 Apr 11;344(6180):172-7. doi: 10.1126/science.1248955.
7
Cellular mechanisms for integral feedback in visually guided behavior.
Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):5700-5. doi: 10.1073/pnas.1400698111. Epub 2014 Mar 31.
8
In vivo time-resolved microtomography reveals the mechanics of the blowfly flight motor.
PLoS Biol. 2014 Mar 25;12(3):e1001823. doi: 10.1371/journal.pbio.1001823. eCollection 2014 Mar.
9
Bat flight with bad wings: is flight metabolism affected by damaged wings?
J Exp Biol. 2013 Apr 15;216(Pt 8):1516-21. doi: 10.1242/jeb.079509. Epub 2013 Jan 24.
10
Veins improve fracture toughness of insect wings.
PLoS One. 2012;7(8):e43411. doi: 10.1371/journal.pone.0043411. Epub 2012 Aug 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验