Suppr超能文献

共表达网络中差异相关基因控制表型转变。

Differentially correlated genes in co-expression networks control phenotype transitions.

作者信息

Thomas Lina D, Vyshenska Dariia, Shulzhenko Natalia, Yambartsev Anatoly, Morgun Andrey

机构信息

Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil.

College of Pharmacy, Oregon State University, Corvallis, USA.

出版信息

F1000Res. 2016 Nov 22;5:2740. doi: 10.12688/f1000research.9708.1. eCollection 2016.

Abstract

BACKGROUND

Co-expression networks are a tool widely used for analysis of "Big Data" in biology that can range from transcriptomes to proteomes, metabolomes and more recently even microbiomes. Several methods were proposed to answer biological questions interrogating these networks. Differential co-expression analysis is a recent approach that measures how gene interactions change when a biological system transitions from one state to another. Although the importance of differentially co-expressed genes to identify dysregulated pathways has been noted, their role in gene regulation is not well studied. Herein we investigated differentially co-expressed genes in a relatively simple mono-causal process (B lymphocyte deficiency) and in a complex multi-causal system (cervical cancer).

METHODS

Co-expression networks of B cell deficiency (Control and BcKO) were reconstructed using Pearson correlation coefficient for two datasets: B10.A strain (12 normal, 12 BcKO) and BALB/c strain (10 normal, 10 BcKO). Co-expression networks of cervical cancer (normal and cancer) were reconstructed using local partial correlation method for five datasets (total of 64 normal, 148 cancer). Differentially correlated pairs were identified along with the location of their genes in BcKO and in cancer networks. Minimum Shortest Path and Bi-partite Betweenness Centrality where statistically evaluated for differentially co-expressed genes in corresponding networks.    Results: We show that in B cell deficiency the differentially co-expressed genes are highly enriched with immunoglobulin genes (causal genes). In cancer we found that differentially co-expressed genes act as "bottlenecks" rather than causal drivers with most flows that come from the key driver genes to the peripheral genes passing through differentially co-expressed genes. Using knockdown experiments for two out of 14 differentially co-expressed genes found in cervical cancer (FGFR2 and CACYBP), we showed that they play regulatory roles in cancer cell growth.

CONCLUSION

Identifying differentially co-expressed genes in co-expression networks is an important tool in detecting regulatory genes involved in alterations of phenotype.

摘要

背景

共表达网络是一种在生物学中广泛用于分析“大数据”的工具,其数据范围涵盖转录组、蛋白质组、代谢组,最近甚至包括微生物组。人们提出了几种方法来解答有关这些网络的生物学问题。差异共表达分析是一种最新的方法,用于衡量生物系统从一种状态转变为另一种状态时基因相互作用的变化。尽管已经注意到差异共表达基因在识别失调途径方面的重要性,但其在基因调控中的作用尚未得到充分研究。在此,我们研究了相对简单的单因果过程(B淋巴细胞缺陷)和复杂的多因果系统(宫颈癌)中的差异共表达基因。

方法

使用Pearson相关系数为两个数据集重建B细胞缺陷(对照和BcKO)的共表达网络:B10.A品系(12个正常,12个BcKO)和BALB/c品系(10个正常,10个BcKO)。使用局部偏相关方法为五个数据集(共64个正常样本,148个癌症样本)重建宫颈癌(正常和癌症)的共表达网络。确定差异相关对及其基因在BcKO和癌症网络中的位置。对相应网络中差异共表达基因的最短路径和二分中间中心性进行统计评估。

结果

我们表明,在B细胞缺陷中,差异共表达基因高度富集免疫球蛋白基因(因果基因)。在癌症中,我们发现差异共表达基因充当“瓶颈”而非因果驱动因素,大多数信息流从关键驱动基因流向外周基因时会经过差异共表达基因。通过对在宫颈癌中发现的14个差异共表达基因中的两个(FGFR2和CACYBP)进行敲低实验,我们表明它们在癌细胞生长中起调节作用。

结论

在共表达网络中识别差异共表达基因是检测参与表型改变的调控基因的重要工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33da/5247791/333b40f2e971/f1000research-5-10464-g0000.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验