Suppr超能文献

用于血管现象研究的组织工程3D微血管和毛细血管网络模型

Tissue-engineered 3D microvessel and capillary network models for the study of vascular phenomena.

作者信息

Bogorad Max I, DeStefano Jackson, Wong Andrew D, Searson Peter C

机构信息

Institute for Nanobiotechnology (INBT), Johns Hopkins University, Baltimore, MD, USA.

Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.

出版信息

Microcirculation. 2017 Jul;24(5). doi: 10.1111/micc.12360.

Abstract

Advances in tissue engineering, cell biology, microfabrication, and microfluidics have led to the development of a wide range of vascular models. Here, we review platforms based on templated microvessel fabrication to generate increasingly complex vascular models of (i) the tumor microenvironment, (ii) occluded microvessels, and (iii) perfused capillary networks. We outline fabrication guidelines and demonstrate a number of experimental methods for probing vascular function such as permeability measurements, tumor cell intravasation, flow characterization, and endothelial cell morphology and proliferation.

摘要

组织工程学、细胞生物学、微制造技术和微流体技术的进展推动了多种血管模型的发展。在此,我们综述基于模板化微血管制造的平台,以生成越来越复杂的血管模型,包括(i)肿瘤微环境、(ii)闭塞微血管和(iii)灌注毛细血管网络。我们概述了制造指南,并展示了一些用于探究血管功能的实验方法,如渗透性测量、肿瘤细胞内渗、血流特征分析以及内皮细胞形态和增殖研究。

相似文献

2
Leveraging avidin-biotin interaction to quantify permeability property of microvessels-on-a-chip networks.
Am J Physiol Heart Circ Physiol. 2022 Jan 1;322(1):H71-H86. doi: 10.1152/ajpheart.00478.2021. Epub 2021 Nov 12.
3
Cellular Based Strategies for Microvascular Engineering.
Stem Cell Rev Rep. 2019 Apr;15(2):218-240. doi: 10.1007/s12015-019-09877-4.
4
A Tissue-Engineered 3D Microvessel Model Reveals the Dynamics of Mosaic Vessel Formation in Breast Cancer.
Cancer Res. 2020 Oct 1;80(19):4288-4301. doi: 10.1158/0008-5472.CAN-19-1564. Epub 2020 Jul 14.
5
Mitosis-Mediated Intravasation in a Tissue-Engineered Tumor-Microvessel Platform.
Cancer Res. 2017 Nov 15;77(22):6453-6461. doi: 10.1158/0008-5472.CAN-16-3279. Epub 2017 Sep 18.
6
Cell-microenvironment interactions and architectures in microvascular systems.
Biotechnol Adv. 2016 Nov 1;34(6):1113-1130. doi: 10.1016/j.biotechadv.2016.07.002. Epub 2016 Jul 11.
7
Methods for forming human microvascular tubes in vitro and measuring their macromolecular permeability.
Methods Mol Biol. 2011;671:281-93. doi: 10.1007/978-1-59745-551-0_17.
9
Tissue-Engineered Microvessels: A Review of Current Engineering Strategies and Applications.
Adv Healthc Mater. 2024 Aug;13(21):e2303419. doi: 10.1002/adhm.202303419. Epub 2024 May 9.

引用本文的文献

2
Modular cone-and-plate device for mechanofluidic assays in Transwell inserts.
Front Bioeng Biotechnol. 2025 Jan 27;13:1494553. doi: 10.3389/fbioe.2025.1494553. eCollection 2025.
3
Development and Optimisation of Hydrogel Scaffolds for Microvascular Network Formation.
Bioengineering (Basel). 2023 Aug 15;10(8):964. doi: 10.3390/bioengineering10080964.
4
A high throughput blood-brain barrier model incorporating shear stress with improved predictive power for drug discovery.
Biomicrofluidics. 2023 Aug 21;17(4):044105. doi: 10.1063/5.0150887. eCollection 2023 Jul.
5
6
Realizations of vascularized tissues: From platforms to grafts.
Biophys Rev (Melville). 2023 Mar;4(1):011308. doi: 10.1063/5.0131972. Epub 2023 Mar 13.
8
Engineering the human blood-brain barrier at the capillary scale using a double-templating technique.
Adv Funct Mater. 2022 Jul 25;32(30). doi: 10.1002/adfm.202110289. Epub 2022 May 6.
9
Cell Chirality as a Novel Measure for Cytotoxicity.
Adv Biol (Weinh). 2022 Jan;6(1):e2101088. doi: 10.1002/adbi.202101088. Epub 2021 Nov 19.
10
Renal Biology Driven Macro- and Microscale Design Strategies for Creating an Artificial Proximal Tubule Using Fiber-Based Technologies.
ACS Biomater Sci Eng. 2021 Oct 11;7(10):4679-4693. doi: 10.1021/acsbiomaterials.1c00408. Epub 2021 Sep 7.

本文引用的文献

1
Real-time imaging and quantitative analysis of doxorubicin transport in a perfusable microvessel platform.
Integr Biol (Camb). 2016 Sep 12;8(9):976-84. doi: 10.1039/c6ib00082g. Epub 2016 Aug 15.
2
Physical and Chemical Signals That Promote Vascularization of Capillary-Scale Channels.
Cell Mol Bioeng. 2016 Mar 1;9(1):73-84. doi: 10.1007/s12195-016-0429-8. Epub 2016 Jan 19.
3
In Vitro Tumor Models: Advantages, Disadvantages, Variables, and Selecting the Right Platform.
Front Bioeng Biotechnol. 2016 Feb 12;4:12. doi: 10.3389/fbioe.2016.00012. eCollection 2016.
4
Coagulation Factor XI Promotes Distal Platelet Activation and Single Platelet Consumption in the Bloodstream Under Shear Flow.
Arterioscler Thromb Vasc Biol. 2016 Mar;36(3):510-7. doi: 10.1161/ATVBAHA.115.307034. Epub 2016 Jan 14.
5
Review: in vitro microvessel models.
Lab Chip. 2015 Nov 21;15(22):4242-55. doi: 10.1039/c5lc00832h.
8
Human brain microvascular endothelial cells resist elongation due to shear stress.
Microvasc Res. 2015 May;99:8-18. doi: 10.1016/j.mvr.2015.02.008. Epub 2015 Feb 26.
9
Generation of Multi-Scale Vascular Network System within 3D Hydrogel using 3D Bio-Printing Technology.
Cell Mol Bioeng. 2014 Sep;7(3):460-472. doi: 10.1007/s12195-014-0340-0.
10
Live-cell imaging of invasion and intravasation in an artificial microvessel platform.
Cancer Res. 2014 Sep 1;74(17):4937-45. doi: 10.1158/0008-5472.CAN-14-1042. Epub 2014 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验