Bristow Thomas F, Haberle Robert M, Blake David F, Des Marais David J, Eigenbrode Jennifer L, Fairén Alberto G, Grotzinger John P, Stack Kathryn M, Mischna Michael A, Rampe Elizabeth B, Siebach Kirsten L, Sutter Brad, Vaniman David T, Vasavada Ashwin R
Exobiology Branch, NASA Ames Research Center, Moffett Field, CA 94035;
Planetary Systems Branch, NASA Ames Research Center, Moffett Field, CA 94035.
Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2166-2170. doi: 10.1073/pnas.1616649114. Epub 2017 Feb 6.
Carbon dioxide is an essential atmospheric component in martian climate models that attempt to reconcile a faint young sun with planetwide evidence of liquid water in the Noachian and Early Hesperian. In this study, we use mineral and contextual sedimentary environmental data measured by the Mars Science Laboratory (MSL) Rover to estimate the atmospheric partial pressure of CO () coinciding with a long-lived lake system in Gale Crater at ∼3.5 Ga. A reaction-transport model that simulates mineralogy observed within the Sheepbed member at Yellowknife Bay (YKB), by coupling mineral equilibria with carbonate precipitation kinetics and rates of sedimentation, indicates atmospheric levels in the 10s mbar range. At such low levels, existing climate models are unable to warm Hesperian Mars anywhere near the freezing point of water, and other gases are required to raise atmospheric pressure to prevent lake waters from being lost to the atmosphere. Thus, either lacustrine features of Gale formed in a cold environment by a mechanism yet to be determined, or the climate models still lack an essential component that would serve to elevate surface temperatures, at least locally, on Hesperian Mars. Our results also impose restrictions on the potential role of atmospheric CO in inferred warmer conditions and valley network formation of the late Noachian.
在试图调和微弱的年轻太阳与诺亚纪和早赫斯珀里亚纪全球范围内液态水证据的火星气候模型中,二氧化碳是一种重要的大气成分。在本研究中,我们利用火星科学实验室(MSL)漫游车测量的矿物和背景沉积环境数据,来估算大约在35亿年前与盖尔陨石坑中一个长期存在的湖泊系统同时期的大气中二氧化碳(CO₂)的分压。一个反应输运模型通过将矿物平衡与碳酸盐沉淀动力学及沉积速率相耦合,模拟了在耶洛奈夫湾(YKB)的羊床层内观测到的矿物学特征,结果表明大气中二氧化碳水平在十几毫巴范围内。在如此低的二氧化碳水平下,现有的气候模型无法将赫斯珀里亚纪的火星温度升高到接近水的冰点,因此需要其他气体来提高大气压力,以防止湖泊水散失到大气中。所以,要么盖尔陨石坑的湖泊特征是在寒冷环境中通过一种尚未确定的机制形成的,要么气候模型仍然缺少一个能在赫斯珀里亚纪火星上至少局部地升高表面温度的关键成分。我们的结果也对大气中二氧化碳在推断的晚期诺亚纪温暖条件和山谷网络形成中的潜在作用施加了限制。