Burtt David G, Stern Jennifer C, Webster Christopher R, Hofmann Amy E, Franz Heather B, Sutter Brad, Thorpe Michael T, Kite Edwin S, Eigenbrode Jennifer L, Pavlov Alexander A, House Christopher H, Tutolo Benjamin M, Des Marais David J, Rampe Elizabeth B, McAdam Amy C, Malespin Charles A
NASA Postdoctoral Fellow, Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771.
Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771.
Proc Natl Acad Sci U S A. 2024 Oct 15;121(42):e2321342121. doi: 10.1073/pnas.2321342121. Epub 2024 Oct 7.
Carbonate minerals are of particular interest in paleoenvironmental research as they are an integral part of the carbon and water cycles, both of which are relevant to habitability. Given that these cycles are less constrained on Mars than they are on Earth, the identification of carbonates has been a point of emphasis for rover missions. Here, we present carbon (δC) and oxygen (δO) isotope data from four carbonates encountered by the Curiosity rover within the Gale crater. The carbon isotope values range from 72 ± 2‰ to 110 ± 3‰ Vienna Pee Dee Belemnite while the oxygen isotope values span from 59 ± 4‰ to 91 ± 4‰ Vienna Standard Mean Ocean Water (1 SE uncertainties). Notably, these values are isotopically heavy (C- and O-enriched) relative to nearly every other Martian material. The extreme isotopic difference between the carbonates and other carbon- and oxygen-rich reservoirs on Mars cannot be reconciled by standard equilibrium carbonate-CO fractionation, thus requiring an alternative process during or prior to carbonate formation. This paper explores two processes capable of contributing to the isotopic enrichments: 1) evaporative-driven Rayleigh distillation and 2) kinetic isotope effects related to cryogenic precipitation. In isolation, each process cannot reproduce the observed carbonate isotope values; however, a combination of these processes represents the most likely source for the extreme isotopic enrichments.
碳酸盐矿物在古环境研究中具有特殊意义,因为它们是碳循环和水循环的重要组成部分,而这两个循环都与宜居性相关。鉴于这些循环在火星上受到的限制比在地球上少,碳酸盐的识别一直是火星车任务的重点。在这里,我们展示了好奇号火星车在盖尔陨石坑内遇到的四种碳酸盐的碳(δC)和氧(δO)同位素数据。碳同位素值范围为72±2‰至110±3‰(相对于维也纳皮迪箭石),而氧同位素值跨度为59±4‰至91±4‰(相对于维也纳标准平均海水,1个标准误差不确定度)。值得注意的是,相对于几乎所有其他火星物质,这些值在同位素上较重(富含碳和氧)。火星上碳酸盐与其他富含碳和氧的储库之间的极端同位素差异无法通过标准的平衡碳酸盐 - CO分馏来解释,因此需要在碳酸盐形成期间或之前有一个替代过程。本文探讨了两个能够导致同位素富集的过程:1)蒸发驱动的瑞利蒸馏和2)与低温沉淀相关的动力学同位素效应。单独来看,每个过程都无法重现观测到的碳酸盐同位素值;然而,这些过程的组合代表了极端同位素富集的最可能来源。