WUR Plant Research International, Wageningen, The Netherlands.
PLoS One. 2012;7(8):e42098. doi: 10.1371/journal.pone.0042098. Epub 2012 Aug 9.
Mineral carbonation of basic silicate minerals regulates atmospheric CO(2) on geological time scales by locking up carbon. Mining and spreading onto the earth's surface of fast-weathering silicates, such as olivine, has been proposed to speed up this natural CO(2) sequestration ('enhanced weathering'). While agriculture may offer an existing infrastructure, weathering rate and impacts on soil and plant are largely unknown. Our objectives were to assess weathering of olivine in soil, and its effects on plant growth and nutrient uptake. In a pot experiment with perennial ryegrass (Lolium perenne L.), weathering during 32 weeks was inferred from bioavailability of magnesium (Mg) in soil and plant. Olivine doses were equivalent to 1630 (OLIV1), 8150, 40700 and 204000 (OLIV4) kg ha(-1). Alternatively, the soluble Mg salt kieserite was applied for reference. Olivine increased plant growth (+15.6%) and plant K concentration (+16.5%) in OLIV4. At all doses, olivine increased bioavailability of Mg and Ni in soil, as well as uptake of Mg, Si and Ni in plants. Olivine suppressed Ca uptake. Weathering estimated from a Mg balance was equivalent to 240 kg ha(-1) (14.8% of dose, OLIV1) to 2240 kg ha(-1) (1.1%, OLIV4). This corresponds to gross CO(2) sequestration of 290 to 2690 kg ha(-1) (29 10(3) to 269 10(3) kg km(-2).) Alternatively, weathering estimated from similarity with kieserite treatments ranged from 13% to 58% for OLIV1. The Olsen model for olivine carbonation predicted 4.0% to 9.0% weathering for our case, independent of olivine dose. Our % values observed at high doses were smaller than this, suggesting negative feedbacks in soil. Yet, weathering appears fast enough to support the 'enhanced weathering' concept. In agriculture, olivine doses must remain within limits to avoid imbalances in plant nutrition, notably at low Ca availability; and to avoid Ni accumulation in soil and crop.
碱性硅酸盐矿物的碳酸化作用通过固碳作用将大气中的 CO(2)固定在地质时间尺度上。人们提议开采并散布到地表的易风化硅酸盐,如橄榄石,以加速这种自然的 CO(2)封存(“增强风化”)。虽然农业可能提供了现有的基础设施,但风化速度以及对土壤和植物的影响在很大程度上尚不清楚。我们的目标是评估橄榄石在土壤中的风化作用及其对植物生长和养分吸收的影响。在一项为期 32 周的多年生黑麦草(Lolium perenne L.)盆栽实验中,通过土壤和植物中镁(Mg)的生物有效性来推断风化作用。橄榄石的剂量相当于 1630(OLIV1)、8150、40700 和 204000(OLIV4)kg ha(-1)。或者,应用可溶性 Mg 盐硫酸镁作为参考。OLIV4 中的橄榄石增加了植物生长(+15.6%)和植物 K 浓度(+16.5%)。在所有剂量下,橄榄石均增加了土壤中 Mg 和 Ni 的生物有效性,以及植物中 Mg、Si 和 Ni 的吸收。橄榄石抑制了 Ca 的吸收。从 Mg 平衡估计的风化作用相当于 240 kg ha(-1)(剂量的 14.8%,OLIV1)至 2240 kg ha(-1)(1.1%,OLIV4)。这相当于 CO(2)的总封存量为 290 至 2690 kg ha(-1)(29 10(3)至 269 10(3)kg km(-2))。或者,从与硫酸镁处理相似的角度估计的风化作用,OLIV1 的范围为 13%至 58%。Olivine 碳酸化的 Olsen 模型预测,对于我们的情况,无论橄榄石剂量如何,风化作用均为 4.0%至 9.0%。我们在高剂量下观察到的%值小于此值,这表明土壤中存在负反馈。然而,风化作用似乎足够快,可以支持“增强风化”的概念。在农业中,橄榄石的剂量必须保持在一定范围内,以避免植物营养失衡,尤其是在 Ca 供应不足的情况下;并避免 Ni 在土壤和作物中的积累。