Nesterenko Alexey M, Kuznetsov Maxim B, Korotkova Daria D, Zaraisky Andrey G
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
PLoS One. 2017 Feb 7;12(2):e0171212. doi: 10.1371/journal.pone.0171212. eCollection 2017.
The Turing instability in the reaction-diffusion system is a widely recognized mechanism of the morphogen gradient self-organization during the embryonic development. One of the essential conditions for such self-organization is sharp difference in the diffusion rates of the reacting substances (morphogens). In classical models this condition is satisfied only for significantly different values of diffusion coefficients which cannot hold for morphogens of similar molecular size. One of the most realistic explanations of the difference in diffusion rate is the difference between adsorption of morphogens to the extracellular matrix (ECM). Basing on this assumption we develop a novel mathematical model and demonstrate its effectiveness in describing several well-known examples of biological patterning. Our model consisting of three reaction-diffusion equations has the Turing-type instability and includes two elements with equal diffusivity and immobile binding sites as the third reaction substance. The model is an extension of the classical Gierer-Meinhardt two-components model and can be reduced to it under certain conditions. Incorporation of ECM in the model system allows us to validate the model for available experimental parameters. According to our model introduction of binding sites gradient, which is frequently observed in embryonic tissues, allows one to generate more types of different spatial patterns than can be obtained with two-components models. Thus, besides providing an essential condition for the Turing instability for the system of morphogen with close values of the diffusion coefficients, the morphogen adsorption on ECM may be important as a factor that increases the variability of self-organizing structures.
反应扩散系统中的图灵不稳定性是胚胎发育过程中形态发生素梯度自组织的一种广泛认可的机制。这种自组织的一个基本条件是反应物质(形态发生素)扩散速率的显著差异。在经典模型中,只有当扩散系数的值有显著差异时,这个条件才能满足,而对于分子大小相似的形态发生素来说,这是不成立的。对扩散速率差异最现实的一种解释是形态发生素与细胞外基质(ECM)吸附的差异。基于这一假设,我们开发了一种新颖的数学模型,并证明了它在描述几个著名的生物图案形成例子方面的有效性。我们的模型由三个反应扩散方程组成,具有图灵型不稳定性,并且包括两个扩散率相等的元素以及作为第三种反应物质的固定结合位点。该模型是经典的吉勒尔 - 迈因哈特双组分模型的扩展,在某些条件下可以简化为该模型。在模型系统中纳入细胞外基质使我们能够根据可用的实验参数验证该模型。根据我们的模型,在胚胎组织中经常观察到的结合位点梯度的引入,能够产生比双组分模型更多类型的不同空间模式。因此,形态发生素在细胞外基质上的吸附,除了为扩散系数值相近的形态发生素系统提供图灵不稳定性的基本条件外,作为增加自组织结构变异性的一个因素可能也很重要。