Sun Rui-Ning, Gong Haipeng
MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University , Beijing 100084, China.
J Phys Chem Lett. 2017 Mar 2;8(5):901-908. doi: 10.1021/acs.jpclett.7b00023. Epub 2017 Feb 9.
Voltage-gated sodium (Na) channels play vital roles in the signal transduction of excitable cells. Upon activation of a Na channel, the change of transmembrane voltage triggers conformational change of the voltage sensing domain, which then elicits opening of the pore domain and thus allows an influx of Na ions. Description of this process with atomistic details is in urgent demand. In this work, we simulated the partial activation process of the voltage sensing domain of a prokaryotic Na channel using a polarizable force field. We not only observed the conformational change of the voltage sensing domain from resting to preactive state, but also rigorously estimated the free energy profile along the identified reaction pathway. Comparison with the control simulation using an additive force field indicates that voltage-gating thermodynamics of Na channels may be inaccurately described without considering the electrostatic polarization effect.
电压门控钠(Na)通道在可兴奋细胞的信号转导中起着至关重要的作用。当Na通道被激活时,跨膜电压的变化会触发电压传感结构域的构象变化,进而引发孔道结构域的开放,从而允许Na离子内流。迫切需要用原子细节来描述这个过程。在这项工作中,我们使用可极化力场模拟了原核Na通道电压传感结构域的部分激活过程。我们不仅观察到了电压传感结构域从静息态到预激活态的构象变化,还严格估计了沿确定反应路径的自由能分布。与使用加和力场的对照模拟相比,这表明如果不考虑静电极化效应,可能无法准确描述Na通道的电压门控热力学。