Suppr超能文献

一种集成微流体技术的生物工程三维细胞培养平台,用于解决结核病中的抗菌耐药性问题。

A Bioengineered Three-Dimensional Cell Culture Platform Integrated with Microfluidics To Address Antimicrobial Resistance in Tuberculosis.

作者信息

Bielecka Magdalena K, Tezera Liku B, Zmijan Robert, Drobniewski Francis, Zhang Xunli, Jayasinghe Suwan, Elkington Paul

机构信息

NIHR Respiratory Biomedical Research Unit, Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.

Faculty of Engineering, University of Southampton, Southampton, United Kingdom.

出版信息

mBio. 2017 Feb 7;8(1):e02073-16. doi: 10.1128/mBio.02073-16.

Abstract

UNLABELLED

Antimicrobial resistance presents one of the most significant threats to human health, with the emergence of totally drug-resistant organisms. We have combined bioengineering, genetically modified bacteria, longitudinal readouts, and fluidics to develop a transformative platform to address the drug development bottleneck, utilizing Mycobacterium tuberculosis as the model organism. We generated microspheres incorporating virulent reporter bacilli, primary human cells, and an extracellular matrix by using bioelectrospray methodology. Granulomas form within the three-dimensional matrix, and mycobacterial stress genes are upregulated. Pyrazinamide, a vital first-line antibiotic for treating human tuberculosis, kills M. tuberculosis in a three-dimensional culture but not in a standard two-dimensional culture or Middlebrook 7H9 broth, demonstrating that antibiotic sensitivity within microspheres reflects conditions in patients. We then performed pharmacokinetic modeling by combining the microsphere system with a microfluidic plate and demonstrated that we can model the effect of dynamic antibiotic concentrations on mycobacterial killing. The microsphere system is highly tractable, permitting variation of cell content, the extracellular matrix, sphere size, the infectious dose, and the surrounding medium with the potential to address a wide array of human infections and the threat of antimicrobial resistance.

IMPORTANCE

Antimicrobial resistance is a major global threat, and an emerging concept is that infection should be studied in the context of host immune cells. Tuberculosis is a chronic infection that kills over a million people every year and is becoming progressively more resistant to antibiotics. Recent major studies of shorter treatment or new vaccination approaches have not been successful, demonstrating that transformative technologies are required to control tuberculosis. We have developed an entirely new system to study the infection of host cells in a three-dimensional matrix by using bioengineering. We showed that antibiotics that work in patients are effective in this microsphere system but not in standard infection systems. We then combined microspheres with microfluidics to model drug concentration changes in patients and demonstrate the effect of increasing antibiotic concentrations on bacterial survival. This system can be widely applied to address the threat of antimicrobial resistance and develop new treatments.

摘要

未标记

随着完全耐药生物体的出现,抗菌药物耐药性成为对人类健康最重大的威胁之一。我们结合了生物工程、基因改造细菌、纵向读数和流体ics技术,以开发一个变革性平台来解决药物开发瓶颈,使用结核分枝杆菌作为模式生物。我们通过生物电喷雾方法生成了包含有毒报告杆菌、原代人类细胞和细胞外基质的微球。肉芽肿在三维基质中形成,结核分枝杆菌应激基因上调。吡嗪酰胺是治疗人类结核病的一种重要一线抗生素,在三维培养中可杀死结核分枝杆菌,但在标准二维培养或Middlebrook 7H9肉汤中则不能,这表明微球内的抗生素敏感性反映了患者体内的情况。然后,我们将微球系统与微流控板结合进行药代动力学建模,证明我们可以模拟动态抗生素浓度对细菌杀伤的影响。微球系统具有高度的可操作性,允许改变细胞内容物、细胞外基质、球体大小、感染剂量和周围介质,有可能应对广泛的人类感染和抗菌药物耐药性威胁。

重要性

抗菌药物耐药性是一个重大的全球威胁,一个新兴的概念是应在宿主免疫细胞的背景下研究感染。结核病是一种慢性感染,每年导致超过一百万人死亡,并且对抗生素的耐药性越来越强。最近关于缩短治疗时间或新疫苗接种方法的主要研究并不成功,这表明需要变革性技术来控制结核病。我们开发了一个全新的系统,通过生物工程在三维基质中研究宿主细胞的感染。我们表明,在患者中有效的抗生素在这个微球系统中有效,但在标准感染系统中无效。然后,我们将微球与微流控技术结合,模拟患者体内的药物浓度变化,并证明增加抗生素浓度对细菌存活的影响。这个系统可以广泛应用于应对抗菌药物耐药性威胁并开发新的治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f080/5296599/8bbdd17b07d1/mbo0011731920001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验