Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Technische Universität Dresden , Fetscher Strasse 74, 01307 Dresden, Germany.
German Center for Diabetes Research (DZD e.V.) , Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
J Am Chem Soc. 2017 Mar 22;139(11):4019-4024. doi: 10.1021/jacs.6b11760. Epub 2017 Mar 7.
The orchestrated recognition of phosphoinositides and concomitant intracellular release of Ca is pivotal to almost every aspect of cellular processes, including membrane homeostasis, cell division and growth, vesicle trafficking, as well as secretion. Although Ca is known to directly impact phosphoinositide clustering, little is known about the molecular basis for this or its significance in cellular signaling. Here, we study the direct interaction of Ca with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P), the main lipid marker of the plasma membrane. Electrokinetic potential measurements of PI(4,5)P containing liposomes reveal that Ca as well as Mg reduce the zeta potential of liposomes to nearly background levels of pure phosphatidylcholine membranes. Strikingly, lipid recognition by the default PI(4,5)P lipid sensor, phospholipase C delta 1 pleckstrin homology domain (PLC δ1-PH), is completely inhibited in the presence of Ca, while Mg has no effect with 100 nm liposomes and modest effect with giant unilamellar vesicles. Consistent with biochemical data, vibrational sum frequency spectroscopy and atomistic molecular dynamics simulations reveal how Ca binding to the PI(4,5)P headgroup and carbonyl regions leads to confined lipid headgroup tilting and conformational rearrangements. We rationalize these findings by the ability of calcium to block a highly specific interaction between PLC δ1-PH and PI(4,5)P, encoded within the conformational properties of the lipid itself. Our studies demonstrate the possibility that switchable phosphoinositide conformational states can serve as lipid recognition and controlled cell signaling mechanisms.
磷酸肌醇的有序识别以及随之而来的细胞内 Ca 释放对于细胞过程的几乎所有方面都至关重要,包括膜稳态、细胞分裂和生长、囊泡运输以及分泌。尽管 Ca 已知会直接影响磷酸肌醇的聚集,但对于这种作用的分子基础及其在细胞信号转导中的意义却知之甚少。在这里,我们研究了 Ca 与磷脂酰肌醇 4,5-二磷酸(PI(4,5)P)的直接相互作用,PI(4,5)P 是质膜的主要脂质标志物。含有 PI(4,5)P 的脂质体的电动电位测量表明,Ca 和 Mg 都会将脂质体的 ζ 电位降低到纯磷脂酰胆碱膜的背景水平。引人注目的是,在 Ca 存在的情况下,默认的 PI(4,5)P 脂质传感器——磷脂酶 C delta 1 pleckstrin 同源结构域(PLC δ1-PH)对脂质的识别完全被抑制,而 Mg 对 100nm 脂质体没有影响,对巨单层囊泡的影响也不大。与生化数据一致,振动和频光谱和原子分子动力学模拟揭示了 Ca 与 PI(4,5)P 头基和羰基区域的结合如何导致受限的脂质头基倾斜和构象重排。我们通过 Ca 阻断 PLC δ1-PH 与 PI(4,5)P 之间高度特异性相互作用的能力来合理化这些发现,这种相互作用编码在脂质本身的构象特性中。我们的研究表明,可切换的磷酸肌醇构象状态可以作为脂质识别和受控细胞信号转导机制。