Li Fang, Hu Yanmei, Wang Yuanxiang, Ma Chunlong, Wang Jun
Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona , Tucson, Arizona 85721, United States.
BIO5 Institute, The University of Arizona , Tucson, Arizona 85721, United States.
J Med Chem. 2017 Feb 23;60(4):1580-1590. doi: 10.1021/acs.jmedchem.6b01852. Epub 2017 Feb 9.
The existence of multidrug-resistant influenza viruses, coupled with the continuously antigenic shift and antigenic drift of influenza viruses, necessitates the development of the next-generation of influenza antivirals. As the AM2-S31N mutant persists in more than 95% of current circulating influenza A viruses, targeting the AM2-S31N proton channel appears to be a logical and valid approach to combating drug resistance. Starting from compound 1, an isoxazole compound with potent AM2-S31N channel blockage and antiviral activity, in this study we report an expeditious synthetic strategy that allows us to promptly explore the structure-activity relationships of isoxazole-containing AM2-S31N inhibitors. Propelled by the convenient synthesis, the lead optimization effort yielded a number of potent antivirals with submicromolar efficacy against several human clinical isolates of influenza A viruses, including both oseltamivir-sensitive and -resistant strains.
多重耐药流感病毒的存在,再加上流感病毒不断发生的抗原转变和抗原漂移,使得开发下一代流感抗病毒药物成为必要。由于AM2-S31N突变体在目前超过95%的流行甲型流感病毒中持续存在,靶向AM2-S31N质子通道似乎是对抗耐药性的合理且有效的方法。从具有强效AM2-S31N通道阻断和抗病毒活性的异恶唑化合物1开始,在本研究中我们报告了一种快速合成策略,该策略使我们能够迅速探索含异恶唑的AM2-S31N抑制剂的构效关系。在便捷合成的推动下,先导化合物优化工作产生了许多对几种甲型流感病毒人类临床分离株具有亚微摩尔效力的强效抗病毒药物,包括对奥司他韦敏感和耐药的菌株。