University Medicine Rostock, Department of Orthopedics, Biomechanics and Implant Technology Laboratory, Doberaner Strasse 142, 18057 Rostock, Germany.
H.C. Starck Tantalum and Niobium GmbH, Im Schleeke 78-91, 38642 Goslar, Germany.
Mater Sci Eng C Mater Biol Appl. 2017 Apr 1;73:756-766. doi: 10.1016/j.msec.2016.12.098. Epub 2016 Dec 24.
Nowadays, biomaterials can be used to maintain or replace several functions of the human body if necessary. Titanium and its alloys, i.e. Ti6Al4V are the most common materials (70 to 80%) used for structural orthopedic implants due to their unique combination of good mechanical properties, corrosion resistance and biocompatibility. Addition of β-stabilizers, e.g. niobium, can improve the mechanical properties of such titanium alloys further, simultaneously offering excellent biocompatibility. In this in vitro study, human osteoblasts and fibroblasts were cultured on different niobium specimens (Nb Amperit, Nb Ampertec), Nb sheets and Ti-42Nb (sintered and 3D-printed by selective laser melting, SLM) and compared with forged Ti6Al4V specimens. Furthermore, human osteoblasts were incubated with particulates of the Nb and Ti-42Nb specimens in three concentrations over four and seven days to imitate influence of wear debris. Thereby, the specimens with the roughest surfaces, i.e. Ti-42Nb and Nb Ampertec, revealed excellent and similar results for both cell types concerning cell viability and collagen synthesis superior to forged Ti6Al4V. Examinations with particulate debris disclosed a dose-dependent influence of all powders with Nb Ampertec showing the highest decrease of cell viability and collagen synthesis. Furthermore, interleukin synthesis was only slightly increased for all powders. In summary, Nb Ampertec (sintered Nb) and Ti-42Nb materials seem to be promising alternatives for medical applications compared to common materials like forged or melted Ti6Al4V.
如今,如果需要,生物材料可用于维持或替代人体的多种功能。钛及其合金(如 Ti6Al4V)由于具有良好的机械性能、耐腐蚀性和生物相容性的独特组合,是最常用于结构骨科植入物的材料(占 70%至 80%)。添加β稳定剂,例如铌,可以进一步提高此类钛合金的机械性能,同时提供出色的生物相容性。在这项体外研究中,将人类成骨细胞和纤维母细胞培养在不同的铌样本(Nb Amperit、Nb Ampertec)、铌片和 Ti-42Nb(通过选择性激光熔化(SLM)烧结和 3D 打印)上,并与锻造 Ti6Al4V 样本进行了比较。此外,将人类成骨细胞与 Nb 和 Ti-42Nb 样本的颗粒在三个浓度下孵育 4 天和 7 天,以模拟磨损颗粒的影响。因此,表面最粗糙的样本,即 Ti-42Nb 和 Nb Ampertec,对于两种细胞类型的细胞活力和胶原蛋白合成都表现出优异且相似的结果,优于锻造 Ti6Al4V。颗粒状碎片的检查显示,所有含铌粉末都具有剂量依赖性的影响,其中 Nb Ampertec 显示出细胞活力和胶原蛋白合成的降低幅度最大。此外,所有粉末的白细胞介素合成仅略有增加。总之,与常见的锻造或熔化 Ti6Al4V 材料相比,Nb Ampertec(烧结铌)和 Ti-42Nb 材料似乎是更有前途的医疗应用替代品。