Suppr超能文献

在结节性硬化症小鼠模型中,神经元源性CTGF/CCN2对髓鞘形成起负向调节作用。

Neuronal CTGF/CCN2 negatively regulates myelination in a mouse model of tuberous sclerosis complex.

作者信息

Ercan Ebru, Han Juliette M, Di Nardo Alessia, Winden Kellen, Han Min-Joon, Hoyo Leonie, Saffari Afshin, Leask Andrew, Geschwind Daniel H, Sahin Mustafa

机构信息

Department of Neurology, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115.

Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115.

出版信息

J Exp Med. 2017 Mar 6;214(3):681-697. doi: 10.1084/jem.20160446. Epub 2017 Feb 9.

Abstract

Disruption of myelination during development has been implicated in a range of neurodevelopmental disorders including tuberous sclerosis complex (TSC). TSC patients with autism display impairments in white matter integrity. Similarly, mice lacking neuronal have a hypomyelination phenotype. However, the mechanisms that underlie these phenotypes remain unknown. In this study, we demonstrate that neuronal TSC1/2 orchestrates a program of oligodendrocyte maturation through the regulated secretion of connective tissue growth factor (CTGF). We characterize oligodendrocyte maturation both in vitro and in vivo. We find that neuron-specific deletion results in an increase in CTGF secretion that non-cell autonomously stunts oligodendrocyte development and decreases the total number of oligodendrocytes. Genetic deletion of CTGF from neurons, in turn, mitigates the TSC-dependent hypomyelination phenotype. These results show that the mechanistic target of rapamycin (mTOR) pathway in neurons regulates CTGF production and secretion, revealing a paracrine mechanism by which neuronal signaling regulates oligodendrocyte maturation and myelination in TSC. This study highlights the role of mTOR-dependent signaling between neuronal and nonneuronal cells in the regulation of myelin and identifies an additional therapeutic avenue for this disease.

摘要

发育过程中髓鞘形成的破坏与一系列神经发育障碍有关,包括结节性硬化症(TSC)。患有自闭症的TSC患者在白质完整性方面存在缺陷。同样,缺乏神经元的小鼠具有髓鞘形成不足的表型。然而,这些表型背后的机制仍然未知。在本研究中,我们证明神经元中的TSC1/2通过调节结缔组织生长因子(CTGF)的分泌来协调少突胶质细胞成熟程序。我们在体外和体内对少突胶质细胞成熟进行了表征。我们发现神经元特异性缺失导致CTGF分泌增加,这非细胞自主地阻碍少突胶质细胞发育并减少少突胶质细胞总数。反过来,从神经元中基因删除CTGF可减轻TSC依赖的髓鞘形成不足表型。这些结果表明,神经元中的雷帕霉素机制性靶标(mTOR)途径调节CTGF的产生和分泌,揭示了一种旁分泌机制,通过该机制神经元信号传导调节TSC中的少突胶质细胞成熟和髓鞘形成。这项研究强调了mTOR依赖的神经元与非神经元细胞之间的信号传导在髓鞘调节中的作用,并确定了针对该疾病的另一条治疗途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc8d/5339668/ceade9aaf28f/JEM_20160446_Fig1.jpg

相似文献

1
Neuronal CTGF/CCN2 negatively regulates myelination in a mouse model of tuberous sclerosis complex.
J Exp Med. 2017 Mar 6;214(3):681-697. doi: 10.1084/jem.20160446. Epub 2017 Feb 9.
3
Neuron-Glia Interactions Increase Neuronal Phenotypes in Tuberous Sclerosis Complex Patient iPSC-Derived Models.
Stem Cell Reports. 2019 Jan 8;12(1):42-56. doi: 10.1016/j.stemcr.2018.11.019. Epub 2018 Dec 20.
6
The specificity and role of microglia in epileptogenesis in mouse models of tuberous sclerosis complex.
Epilepsia. 2018 Sep;59(9):1796-1806. doi: 10.1111/epi.14526. Epub 2018 Aug 5.
8
Raptor downregulation rescues neuronal phenotypes in mouse models of Tuberous Sclerosis Complex.
Nat Commun. 2022 Aug 9;13(1):4665. doi: 10.1038/s41467-022-31961-6.

引用本文的文献

2
TSC2-mTORC1 axis regulates morphogenesis and neurological function of Gli1 adult-born dentate granule cells.
Mol Biol Cell. 2025 Jan 1;36(1):br1. doi: 10.1091/mbc.E24-08-0366. Epub 2024 Nov 27.
5
The role of TSC1 and TSC2 proteins in neuronal axons.
Mol Psychiatry. 2024 Apr;29(4):1165-1178. doi: 10.1038/s41380-023-02402-7. Epub 2024 Jan 11.
6
coordinates neuroprogenitor differentiation.
iScience. 2023 Nov 14;26(12):108442. doi: 10.1016/j.isci.2023.108442. eCollection 2023 Dec 15.
7
Connective tissue growth factor: Role in trabecular meshwork remodeling and intraocular pressure lowering.
Exp Biol Med (Maywood). 2023 Aug;248(16):1425-1436. doi: 10.1177/15353702231199466. Epub 2023 Oct 24.
8
NeST: nested hierarchical structure identification in spatial transcriptomic data.
Nat Commun. 2023 Oct 17;14(1):6554. doi: 10.1038/s41467-023-42343-x.
10
Increased degradation of FMRP contributes to neuronal hyperexcitability in tuberous sclerosis complex.
Cell Rep. 2023 Aug 29;42(8):112838. doi: 10.1016/j.celrep.2023.112838. Epub 2023 Jul 25.

本文引用的文献

1
Impaired Mitochondrial Dynamics and Mitophagy in Neuronal Models of Tuberous Sclerosis Complex.
Cell Rep. 2016 Oct 18;17(4):1053-1070. doi: 10.1016/j.celrep.2016.09.054.
3
Hypomyelination following deletion of Tsc2 in oligodendrocyte precursors.
Ann Clin Transl Neurol. 2015 Oct 27;2(12):1041-54. doi: 10.1002/acn3.254. eCollection 2015 Dec.
4
Regulation of Connective Tissue Growth Factor and Cardiac Fibrosis by an SRF/MicroRNA-133a Axis.
PLoS One. 2015 Oct 6;10(10):e0139858. doi: 10.1371/journal.pone.0139858. eCollection 2015.
5
The neurology of mTOR.
Neuron. 2014 Oct 22;84(2):275-91. doi: 10.1016/j.neuron.2014.09.034.
6
Balanced mTORC1 activity in oligodendrocytes is required for accurate CNS myelination.
J Neurosci. 2014 Jun 18;34(25):8432-48. doi: 10.1523/JNEUROSCI.1105-14.2014.
10
Mammalian target of rapamycin promotes oligodendrocyte differentiation, initiation and extent of CNS myelination.
J Neurosci. 2014 Mar 26;34(13):4453-65. doi: 10.1523/JNEUROSCI.4311-13.2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验