School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK.
Department of Physics, Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2AZ, UK.
Sci Rep. 2017 Feb 10;7:42107. doi: 10.1038/srep42107.
We investigate the role of lithographically-induced strain relaxation in a micron-scaled device fabricated from epitaxial thin films of the magnetostrictive alloy FeGa. The strain relaxation due to lithographic patterning induces a magnetic anisotropy that competes with the magnetocrystalline and shape induced anisotropies to play a crucial role in stabilising a flux-closing domain pattern. We use magnetic imaging, micromagnetic calculations and linear elastic modelling to investigate a region close to the edges of an etched structure. This highly-strained edge region has a significant influence on the magnetic domain configuration due to an induced magnetic anisotropy resulting from the inverse magnetostriction effect. We investigate the competition between the strain-induced and shape-induced anisotropy energies, and the resultant stable domain configurations, as the width of the bar is reduced to the nanoscale range. Understanding this behaviour will be important when designing hybrid magneto-electric spintronic devices based on highly magnetostrictive materials.
我们研究了在由磁致伸缩合金 FeGa 的外延薄膜制成的微米级器件中,光刻诱导应变松弛的作用。由于光刻图案化引起的应变松弛会产生磁各向异性,与磁晶各向异性和形状各向异性竞争,在稳定闭磁通畴模式方面发挥关键作用。我们使用磁性成像、微磁计算和线性弹性建模来研究接近刻蚀结构边缘的区域。由于反磁致伸缩效应引起的诱导磁各向异性,这个高应变边缘区域对磁畴结构有很大的影响。我们研究了应变诱导和形状诱导各向异性能之间的竞争,以及在条形宽度减小到纳米尺度范围时的稳定畴构型。当设计基于高磁致伸缩材料的混合磁电自旋电子器件时,了解这种行为将非常重要。