Institut d'Electronique Fondamentale, Université Paris-Sud, 91405 Orsay, France.
Nat Commun. 2013;4:1378. doi: 10.1038/ncomms2386.
The control of magnetic order in nanoscale devices underpins many proposals for integrating spintronics concepts into conventional electronics. A key challenge lies in finding an energy-efficient means of control, as power dissipation remains an important factor limiting future miniaturization of integrated circuits. One promising approach involves magnetoelectric coupling in magnetostrictive/piezoelectric systems, where induced strains can bear directly on the magnetic anisotropy. While such processes have been demonstrated in several multiferroic heterostructures, the incorporation of such complex materials into practical geometries has been lacking. Here we demonstrate the possibility of generating sizeable anisotropy changes, through induced strains driven by applied electric fields, in hybrid piezoelectric/spin-valve nanowires. By combining magneto-optical Kerr effect and magnetoresistance measurements, we show that domain wall propagation fields can be doubled under locally applied strains. These results highlight the prospect of constructing low-power domain wall gates for magnetic logic devices.
在纳米尺度器件中控制磁有序是将自旋电子学概念集成到传统电子学中的许多提议的基础。一个关键的挑战在于寻找一种节能的控制手段,因为功耗仍然是限制集成电路进一步小型化的重要因素。一种很有前途的方法涉及磁致伸缩/压电系统中的磁电耦合,其中感应应变可以直接影响磁各向异性。虽然这些过程已经在几种多铁性异质结构中得到了证明,但将这些复杂材料纳入实际几何形状的情况仍然缺乏。在这里,我们通过在混合压电/自旋阀纳米线中施加电场产生的诱导应变,证明了通过施加电场产生可观的各向异性变化的可能性。通过结合磁光克尔效应和磁电阻测量,我们表明在局部施加应变下,畴壁传播场可以增加一倍。这些结果突出了构建用于磁逻辑器件的低功耗畴壁门的前景。