Suppr超能文献

通过非电控应变工程实现 L10-FePt 薄膜中磁化翻转特性和畴结构的可逆和非易失性调制。

Reversible and Nonvolatile Modulations of Magnetization Switching Characteristic and Domain Configuration in L10-FePt Films via Nonelectrically Controlled Strain Engineering.

机构信息

Department of Materials Physics and Chemistry, University of Science and Technology Beijing , Beijing 100083, People's Republic of China.

State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing , Beijing 102249, China.

出版信息

ACS Appl Mater Interfaces. 2016 Mar 23;8(11):7545-52. doi: 10.1021/acsami.5b12699. Epub 2016 Mar 11.

Abstract

Reversible and nonvolatile modulation of magnetization switching characteristic in ferromagnetic materials is crucial in developing spintronic devices with low power consumption. It is recently discovered that strain engineering can be an active and effective approach in tuning the magnetic/transport properties of thin films. The primary method in strain modulation is via the converse piezoelectric effect of ferroelectrics, which is usually volatile due to the reliance of the required electric field. Also the maximum amount of deformation in ferroelectrics is usually limited to be less than 1%, and the corresponding magnetoelastic strain energy introduced to ferromagnetic films is on the order of 10(4) J/m(3), not enough to overcome magnetocrystalline anisotropy energy (Ku) in many materials. Different from using conventional strain inducing substrates, this paper reports on the significantly large, reversible, and nonvolatile lattice strain in the L10-FePt films (up to 2.18%) using nonelectrically controlled shape memory alloy substrates. Introduced lattice strain can be large enough to effectively affect domain structure and magnetic reversal in FePt. A noticeable decrease of coercivity field by 80% is observed. Moreover, the coercivity field tunability using such substrates is nonvolatile at room temperature and is also reversible due to the characteristics of the shape memory effect. This finding provides an efficient avenue for developing strain assisted spintronic devices such as logic memory device, magnetoresistive random-access memory, and memristor.

摘要

在开发具有低功耗的自旋电子器件中,铁磁材料中磁化翻转特性的可反转和非易失性调制是至关重要的。最近发现,应变工程可以成为调节薄膜磁/输运性质的一种主动且有效的方法。应变调节的主要方法是通过铁电体的逆压电效应,由于需要电场的依赖,该效应通常是易失的。此外,铁电体的最大变形量通常限制在 1%以内,而引入铁磁薄膜的相应磁弹应变能约为 10(4) J/m(3),不足以克服许多材料中的磁晶各向异性能量 (Ku)。与使用传统的应变诱导衬底不同,本文报道了使用非电控形状记忆合金衬底的 L10-FePt 薄膜中显著的、可反转和非易失的晶格应变(高达 2.18%)。引入的晶格应变足以有效影响 FePt 的畴结构和磁反转。观察到矫顽力场显著降低了 80%。此外,由于形状记忆效应的特点,这种衬底的矫顽力场可调性在室温下是非易失的,并且也是可反转的。这一发现为开发应变辅助的自旋电子器件提供了有效的途径,如逻辑存储器件、磁阻随机存取存储器和忆阻器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验