Hua Wenbo, Cui Ruixia, Yang Heran, Zhang Jingyao, Liu Chang, Sun Jian
School of Mathematics and Statistics, Xi'an Jiaotong University, No.28 Xianning West Rd., Xi'an, 710049, Shaanxi, China.
Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, No.28 Xianning West Rd., Xi'an, 710049, Shaanxi, China.
Commun Biol. 2025 Apr 6;8(1):575. doi: 10.1038/s42003-025-07995-z.
Understanding disease progression is crucial for detecting critical transitions and finding trigger molecules, facilitating early diagnosis interventions. However, the high dimensionality of data and the lack of aligned samples across disease stages have posed challenges in addressing these tasks. We present a computational framework, Gaussian Graphical Optimal Transport (GGOT), for analyzing disease progressions. The proposed GGOT uses Gaussian graphical models, incorporating protein interaction networks, to characterize the data distributions at different disease stages. Then we use population-level optimal transport to calculate the Wasserstein distances and transport between stages, enabling us to detect critical transitions. By analyzing the per-molecule transport distance, we quantify the importance of each molecule and identify trigger molecules. Moreover, GGOT predicts the occurrence of critical transitions in unseen samples and visualizes the disease progression process. We apply GGOT to the simulation dataset and six disease datasets with varying disease progression rates to substantiate its effectiveness. Compared to existing methods, our proposed GGOT exhibits superior performance in detecting critical transitions.
了解疾病进展对于检测关键转变和寻找触发分子至关重要,有助于早期诊断干预。然而,数据的高维度以及疾病各阶段缺乏对齐的样本给解决这些任务带来了挑战。我们提出了一个计算框架,即高斯图形最优传输(GGOT),用于分析疾病进展。所提出的GGOT使用高斯图形模型,并结合蛋白质相互作用网络,来表征不同疾病阶段的数据分布。然后我们使用群体水平的最优传输来计算瓦瑟斯坦距离并在各阶段之间进行传输,从而使我们能够检测关键转变。通过分析每个分子的传输距离,我们量化每个分子的重要性并识别触发分子。此外,GGOT预测未见样本中关键转变的发生并可视化疾病进展过程。我们将GGOT应用于模拟数据集和六个具有不同疾病进展速率的疾病数据集,以证实其有效性。与现有方法相比,我们提出的GGOT在检测关键转变方面表现出卓越的性能。