Suppr超能文献

MOLNs:一个使用PyURDME在系统生物学中进行交互式、可重复且可扩展的空间随机计算实验的云平台。

MOLNs: A CLOUD PLATFORM FOR INTERACTIVE, REPRODUCIBLE, AND SCALABLE SPATIAL STOCHASTIC COMPUTATIONAL EXPERIMENTS IN SYSTEMS BIOLOGY USING PyURDME.

作者信息

Drawert Brian, Trogdon Michael, Toor Salman, Petzold Linda, Hellander Andreas

机构信息

Department of Computer Science, University of California, Santa Barbara, Santa Barbara, CA 93106.

Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106.

出版信息

SIAM J Sci Comput. 2016;38(3):C179-C202. doi: 10.1137/15M1014784. Epub 2016 Jun 1.

Abstract

Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools and a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments.

摘要

使用空间随机模拟的计算实验带来了重要的新生物学见解,但由于与蒙特卡罗计算工作流程相关的巨大计算成本,它们需要专门的工具和复杂的软件栈,以及大规模且可扩展的计算和数据分析资源。对于系统生物学的从业者来说,设置和管理一个大规模分布式计算环境以支持高效且可重复的建模的复杂性可能令人望而却步。这导致了空间随机模拟工具采用的障碍,有效地限制了定量建模所解决的生物学问题的类型。在本文中,我们展示了PyURDME,一个全新的、用户友好的空间建模和模拟包,以及MOLNs,一种用于随机反应扩散模型分布式模拟的云计算设备。MOLNs基于IPython,并为开发可共享且可重复的分布式并行计算实验提供了一个交互式编程平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5c6/5302863/0c207bd8f98a/nihms844899f1.jpg

相似文献

4
Parallel stochastic systems biology in the cloud.云计算中的并行随机系统生物学。
Brief Bioinform. 2014 Sep;15(5):798-813. doi: 10.1093/bib/bbt040. Epub 2013 Jun 18.
8
BioSimulator.jl: Stochastic simulation in Julia.BioSimulator.jl:Julia 中的随机模拟。
Comput Methods Programs Biomed. 2018 Dec;167:23-35. doi: 10.1016/j.cmpb.2018.09.009. Epub 2018 Oct 10.
9
Google-Accelerated Biomolecular Simulations.谷歌加速生物分子模拟
Methods Mol Biol. 2019;2022:291-309. doi: 10.1007/978-1-4939-9608-7_12.

引用本文的文献

1
Programmatic modeling for biological systems.生物系统的程序建模
Curr Opin Syst Biol. 2021 Sep;27. doi: 10.1016/j.coisb.2021.05.004. Epub 2021 May 24.
2
Coordinating cell polarization and morphogenesis through mechanical feedback.通过机械反馈协调细胞极化和形态发生。
PLoS Comput Biol. 2021 Jan 28;17(1):e1007971. doi: 10.1371/journal.pcbi.1007971. eCollection 2021 Jan.
3
Towards reproducible computational drug discovery.迈向可重复的计算药物发现。
J Cheminform. 2020 Jan 28;12(1):9. doi: 10.1186/s13321-020-0408-x.
6
The effect of cell geometry on polarization in budding yeast.细胞几何形状对出芽酵母中极化的影响。
PLoS Comput Biol. 2018 Jun 11;14(6):e1006241. doi: 10.1371/journal.pcbi.1006241. eCollection 2018 Jun.

本文引用的文献

3
Interactive notebooks: Sharing the code.交互式笔记本:分享代码。
Nature. 2014 Nov 6;515(7525):151-2. doi: 10.1038/515151a.
5
Spatial stochastic dynamics enable robust cell polarization.空间随机动力学可实现稳健的细胞极化。
PLoS Comput Biol. 2013;9(7):e1003139. doi: 10.1371/journal.pcbi.1003139. Epub 2013 Jul 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验