Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan.
Biochim Biophys Acta Proteins Proteom. 2017 May;1865(5):481-487. doi: 10.1016/j.bbapap.2017.02.009. Epub 2017 Feb 9.
Electrostatic interactions between proteins are key factors that govern the association and reaction rate. We spectroscopically determine the second-order reaction rate constant (k) of electron transfer from [NiFe] hydrogenase (Hase) to cytochrome (cyt) c at various ionic strengths (I). The k value decreases with I. To analyze the results, we develop a semi-analytical formula for I dependence of k based on the assumptions that molecules are spherical and the reaction proceeds via a transition state. Fitting of the formula to the experimental data reveals that the interaction occurs in limited regions with opposite charges and with radii much smaller than those estimated from crystal structures. This suggests that local charges in Hase and cyt c play important roles in the reaction. Although the crystallographic data indicate a positive electrostatic potential over almost the entire surface of the proteins, there exists a small region with negative potential on Hase at which the electron transfer from Hase to cyt c may occur. This local negative potential region is identical to the hypothetical interaction sphere predicted by the analysis. Furthermore, I dependence of k is predicted by the Adaptive Poisson-Boltzmann Solver considering all charges of the amino acids in the proteins and the configuration of Hase/cyt c complex. The calculation reproduces the experimental results except at extremely low I. These results indicate that the stabilization derived from the local electrostatic interaction in the Hase/cyt c complex overcomes the destabilization derived from the electrostatic repulsion of the overall positive charge of both proteins.
蛋白质之间的静电相互作用是控制其结合和反应速率的关键因素。我们在不同离子强度 (I) 下通过光谱法确定了 [NiFe] 氢化酶 (Hase) 向细胞色素 (cyt) c 转移电子的二级反应速率常数 (k)。k 值随 I 的增加而降低。为了分析结果,我们基于分子为球形且反应通过过渡态进行的假设,开发了一个用于 k 对 I 依赖性的半分析公式。该公式与实验数据的拟合表明,相互作用发生在具有相反电荷的有限区域内,且其半径远小于晶体结构估计的值。这表明 Hase 和 cyt c 中的局部电荷在反应中起重要作用。尽管晶体学数据表明蛋白质表面几乎整个区域都存在正静电势,但 Hase 上存在一个小的负电势区域,Hase 中的电子可能会从 Hase 转移到 cyt c。这个局部负电势区域与通过分析预测的假设相互作用球相同。此外,考虑到蛋白质中所有氨基酸的电荷和 Hase/cyt c 复合物的构象,自适应泊松-玻尔兹曼求解器预测了 k 对 I 的依赖性。该计算除了在非常低的 I 之外,还重现了实验结果。这些结果表明,来自 Hase/cyt c 复合物中局部静电相互作用的稳定化克服了来自两个蛋白质整体正电荷静电排斥的稳定化。