Wang X, Roger M, Clément R, Lecomte S, Biaso F, Abriata L A, Mansuelle P, Mazurenko I, Giudici-Orticoni M T, Lojou E, Ilbert M
Aix Marseille Univ , CNRS , IMM , BIP , UMR 7281 , 31 Chemin Aiguier , 13009 Marseille , France . Email:
School of Life Sciences , University of Dundee , Dundee , DD1 5EH , Scotland , UK.
Chem Sci. 2018 May 1;9(21):4879-4891. doi: 10.1039/c8sc01615a. eCollection 2018 Jun 7.
, a chemolithoautotrophic Gram-negative bacterium, has a remarkable ability to obtain energy from ferrous iron oxidation at pH 2. Several metalloproteins have been described as being involved in this respiratory chain coupling iron oxidation with oxygen reduction. However, their properties and physiological functions remain largely unknown, preventing a clear understanding of the global mechanism. In this work, we focus on two metalloproteins of this respiratory pathway, a diheme cytochrome c (Cyt c) and a green copper protein (AcoP) of unknown function. We first demonstrate the formation of a complex between these two purified proteins, which allows homogeneous intermolecular electron-transfer in solution. We then mimic the physiological interaction between the two partners by replacing one at a time with electrodes displaying different chemical functionalities. From the electrochemical behavior of individual proteins, we show that, while electron transfer on AcoP requires weak electrostatic interaction, electron transfer on Cyt c tolerates different charge and hydrophobicity conditions, suggesting a pivotal role of this protein in the metabolic chain. The electrochemical study of the proteins incubated together demonstrates an intermolecular electron transfer involving the protein complex, in which AcoP is reduced through the high potential heme of Cyt c. Modelling of the electrochemical signals at different scan rates allows us to estimate the rate constant of this intermolecular electron transfer in the range of a few s. Possible routes for electron transfer in the acidophilic bacterium are deduced.
嗜酸氧化亚铁硫杆菌是一种化能自养型革兰氏阴性细菌,具有在pH值为2的条件下从氧化亚铁中获取能量的非凡能力。已有几种金属蛋白被描述为参与了这条将铁氧化与氧还原偶联的呼吸链。然而,它们的性质和生理功能在很大程度上仍然未知,这妨碍了对整体机制的清晰理解。在这项工作中,我们聚焦于这条呼吸途径中的两种金属蛋白,一种双血红素细胞色素c(细胞色素c)和一种功能未知的绿色铜蛋白(AcoP)。我们首先证明了这两种纯化蛋白之间形成了复合物,这使得溶液中能够进行均相分子间电子转移。然后,我们通过用展示不同化学功能的电极依次替换其中一个来模拟这两个伙伴之间的生理相互作用。从单个蛋白的电化学行为,我们表明,虽然AcoP上的电子转移需要弱静电相互作用,但细胞色素c上的电子转移能耐受不同的电荷和疏水性条件,这表明该蛋白在代谢链中起关键作用。对一起孵育的蛋白进行的电化学研究表明存在涉及蛋白复合物的分子间电子转移,其中AcoP通过细胞色素c的高电位血红素被还原。对不同扫描速率下电化学信号的建模使我们能够估计这种分子间电子转移的速率常数在几秒的范围内。推导了嗜酸细菌中可能的电子转移途径。