Suppr超能文献

通用医学访谈满意度量表的验证:G-MISS问卷

Validation of the generic medical interview satisfaction scale: the G-MISS questionnaire.

作者信息

Maurice-Szamburski Axel, Michel Pierre, Loundou Anderson, Auquier Pascal

机构信息

Laboratoire Universitaire EA 3279, Santé Publique et Maladies Chroniques, 27 boulevard Jean Moulin, Marseille, 13005, France.

Unité d'aide méthodologique, Direction de la Recherche Clinique, AP-HM, Marseille, France.

出版信息

Health Qual Life Outcomes. 2017 Feb 14;15(1):36. doi: 10.1186/s12955-017-0608-x.

Abstract

BACKGROUND

Patients have about seven medical consultations a year. Despite the importance of medical interviews in the healthcare process, there is no generic instrument to assess patients' experiences in general practices, medical specialties, and surgical specialties. The main objective was to validate a questionnaire assessing patients' experiences with medical consultations in various practices.

METHOD

The G-MISS study was a prospective multi-center trial that enrolled patients from May to July 2016. A total of 2055 patients were included from general practices, medical specialties, and surgical specialties. Patients filled out a questionnaire assessing various aspects of their experience and satisfaction within 1 week after their medical interview. The validation process relied on item response theory. Internal validity was examined using exploratory factorial analysis. The statistical model used the root mean square error of approximation, confirmatory fit index, and standard root mean square residual as fit indices. Scalability and reliability were assessed with the Rasch model and Cronbach's alpha coefficients, respectively. Scale properties across the three subgroups were explored with differential item functioning.

RESULTS

The G-MISS final questionnaire contained 16 items, structured in three dimensions of patients' experiences: "Relief", "Communication", and "Compliance". A global index of patients' experiences was computed as the mean of the dimension scores. All fit indices from the statistical model were satisfactory (RMSEA = 0.03, CFI = 0.98, SRMR = 0.06). The overall scalability had a good fit to the Rasch model. Each dimension was reliable, with Cronbach's alpha ranging from 0.73 to 0.86. Differential item functioning across the three consultation settings was negligible. Patients undergoing medical or surgical specialties reported higher scores in the "Relief" dimension compared with general practice (83.0 ± 11.6 or 82.4 ± 11.6 vs. 73.2 ± 16.7; P < .001). A consultation shorter than 5 min correlated with low patient satisfaction in "Relief" and "Communication" and in the global index, P < .001.

CONCLUSIONS

The G-MISS questionnaire is a valid and reliable questionnaire for assessing patients' experiences after consultations with general practitioners, medical specialists, and surgical specialists. The multidimensional structure relies on item response theory and assesses different aspects of patients' experiences that could be useful in clinical practice and research settings.

摘要

背景

患者每年约有7次医疗咨询。尽管医疗问诊在医疗过程中很重要,但目前尚无通用工具来评估患者在全科医疗、医学专科和外科专科中的就医体验。主要目的是验证一份评估患者在不同医疗场景下就医体验的问卷。

方法

G-MISS研究是一项前瞻性多中心试验,于2016年5月至7月招募患者。共纳入了来自全科医疗、医学专科和外科专科的2055名患者。患者在医疗问诊后1周内填写一份评估其就医体验和满意度各个方面的问卷。验证过程基于项目反应理论。使用探索性因子分析来检验内部效度。统计模型使用近似均方根误差、验证性拟合指数和标准均方根残差作为拟合指标。分别用Rasch模型和Cronbach's α系数评估量表的可扩展性和信度。通过差异项目功能分析来探索三个亚组间的量表特性。

结果

G-MISS最终问卷包含16个项目,分为患者体验的三个维度:“缓解”、“沟通”和“依从性”。计算患者体验的总体指数作为各维度得分的平均值。统计模型的所有拟合指标均令人满意(RMSEA = 0.03,CFI = 0.98,SRMR = 0.06)。总体可扩展性与Rasch模型拟合良好。每个维度都具有可靠性,Cronbach's α系数在0.73至0.86之间。三个咨询场景间的差异项目功能可忽略不计。与全科医疗相比,接受医学专科或外科专科治疗的患者在“缓解”维度上得分更高(83.0±11.6或82.4±11.6 vs. 73.2±16.7;P <.001)。咨询时间短于5分钟与患者在“缓解”和“沟通”维度以及总体指数上的低满意度相关,P <.001。

结论

G-MISS问卷是一份有效且可靠的问卷,用于评估患者在与全科医生、医学专科医生和外科专科医生咨询后的体验。该多维结构基于项目反应理论,评估了患者体验的不同方面,在临床实践和研究环境中可能有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa9/5310066/275e2db96f41/12955_2017_608_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验