Suppr超能文献

人类流动性的多尺度时空分析

Multi-scale spatio-temporal analysis of human mobility.

作者信息

Alessandretti Laura, Sapiezynski Piotr, Lehmann Sune, Baronchelli Andrea

机构信息

City, University of London, London EC1V 0HB, United Kingdom.

Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.

出版信息

PLoS One. 2017 Feb 15;12(2):e0171686. doi: 10.1371/journal.pone.0171686. eCollection 2017.

Abstract

The recent availability of digital traces generated by phone calls and online logins has significantly increased the scientific understanding of human mobility. Until now, however, limited data resolution and coverage have hindered a coherent description of human displacements across different spatial and temporal scales. Here, we characterise mobility behaviour across several orders of magnitude by analysing ∼850 individuals' digital traces sampled every ∼16 seconds for 25 months with ∼10 meters spatial resolution. We show that the distributions of distances and waiting times between consecutive locations are best described by log-normal and gamma distributions, respectively, and that natural time-scales emerge from the regularity of human mobility. We point out that log-normal distributions also characterise the patterns of discovery of new places, implying that they are not a simple consequence of the routine of modern life.

摘要

近期,由通话记录和在线登录产生的数字踪迹数据的可得性显著增进了科学界对人类移动性的理解。然而,迄今为止,有限的数据分辨率和覆盖范围阻碍了对不同时空尺度下人类位移的连贯描述。在此,我们通过分析约850个人的数字踪迹来刻画跨越多个数量级的移动行为,这些踪迹以约10米的空间分辨率,每16秒采样一次,持续25个月。我们表明,连续位置之间的距离和等待时间分布分别最适合用对数正态分布和伽马分布来描述,并且自然时间尺度源自人类移动的规律性。我们指出,对数正态分布也刻画了新地点的发现模式,这意味着它们并非现代生活日常规律的简单结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e15/5310761/22b29b0d0bd1/pone.0171686.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验