Suppr超能文献

从支持全球定位系统(GPS)的手机获取的混合定位数据质量:这重要吗?

Quality of hybrid location data drawn from GPS-enabled mobile phones: Does it matter?

作者信息

Yoo Eun-Hye, Roberts John E, Eum Youngseob, Shi Youdi

机构信息

Department of Geography, State University of New York at Buffalo, Buffalo, NY, USA.

出版信息

Trans GIS. 2020 Apr;24(2):462-482. doi: 10.1111/tgis.12612. Epub 2020 Jan 27.

Abstract

Despite their increasing popularity in human mobility studies, few studies have investigated the geo-spatial quality of GPS-enabled mobile phone data in which phone location is determined by special queries designed to collect location data with predetermined sampling intervals (hereafter "active mobile phone data"). We focus on two key issues in active mobile phone data-systematic gaps in tracking records and positioning uncertainty-and investigate their effects on human mobility pattern analyses. To address gaps in records, we develop an imputation strategy that utilizes local environment information, such as parcel boundaries, and recording time intervals. We evaluate the performance of the proposed imputation strategy by comparing raw versus imputed data with participants' online survey responses. The results indicate that imputed data are superior to raw data in identifying individuals' frequently visited places on a weekly basis. To assess the location accuracy of active mobile phone data, we investigate the spatial and temporal patterns of the positional uncertainty of each record and examine via Monte Carlo simulation how inaccurate location information might affect human mobility pattern indicators. Results suggest that the level of uncertainty varies as a function of time of day and the type of land use at which the position was determined, both of which are closely related to the location technology used to determine the location. Our study highlights the importance of understanding and addressing limitations of mobile phone derived positioning data prior to their use in human mobility studies.

摘要

尽管全球定位系统(GPS)功能的手机数据在人类移动性研究中越来越受欢迎,但很少有研究调查其地理空间质量,其中手机位置是通过旨在以预定采样间隔收集位置数据的特殊查询来确定的(以下简称“主动手机数据”)。我们关注主动手机数据中的两个关键问题——跟踪记录中的系统间隙和定位不确定性——并研究它们对人类移动模式分析的影响。为了解决记录中的间隙问题,我们开发了一种插补策略,该策略利用诸如地块边界和记录时间间隔等本地环境信息。我们通过将原始数据与插补后的数据与参与者的在线调查回复进行比较,来评估所提出的插补策略的性能。结果表明,在识别个人每周经常访问的地点方面,插补后的数据优于原始数据。为了评估主动手机数据的定位准确性,我们研究了每条记录位置不确定性的空间和时间模式,并通过蒙特卡洛模拟检查不准确的位置信息可能如何影响人类移动模式指标。结果表明,不确定性水平随一天中的时间以及确定位置时的土地利用类型而变化,这两者都与用于确定位置的定位技术密切相关。我们的研究强调了在将手机衍生的定位数据用于人类移动性研究之前,理解和解决其局限性的重要性。

相似文献

引用本文的文献

1
How regularly do people visit service places?人们多久会去一次服务场所?
Comput Environ Urban Syst. 2023 Jan;99. doi: 10.1016/j.compenvurbsys.2022.101896. Epub 2022 Oct 17.

本文引用的文献

3
How many days are enough?: capturing routine human mobility.多少天足够?:捕捉日常人类活动。
Int J Geogr Inf Sci. 2018;32(7):1485-1504. doi: 10.1080/13658816.2018.1434888. Epub 2018 Apr 25.
4
Smartphone GPS accuracy study in an urban environment.智能手机 GPS 精度在城市环境中的研究。
PLoS One. 2019 Jul 18;14(7):e0219890. doi: 10.1371/journal.pone.0219890. eCollection 2019.
9
Multi-scale spatio-temporal analysis of human mobility.人类流动性的多尺度时空分析
PLoS One. 2017 Feb 15;12(2):e0171686. doi: 10.1371/journal.pone.0171686. eCollection 2017.
10
The TimeGeo modeling framework for urban motility without travel surveys.无需出行调查的城市机动性时间地理建模框架。
Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):E5370-8. doi: 10.1073/pnas.1524261113. Epub 2016 Aug 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验