Suppr超能文献

人类的视觉搜索行为远非理想状态。

Human visual search behaviour is far from ideal.

作者信息

Nowakowska Anna, Clarke Alasdair D F, Hunt Amelia R

机构信息

Department of Psychology, University of Aberdeen, Room T32, William Guild Building, King's College, Aberdeen, UK

Department of Psychology, University of Aberdeen, Room T32, William Guild Building, King's College, Aberdeen, UK.

出版信息

Proc Biol Sci. 2017 Feb 22;284(1849). doi: 10.1098/rspb.2016.2767.

Abstract

Evolutionary pressures have made foraging behaviours highly efficient in many species. Eye movements during search present a useful instance of foraging behaviour in humans. We tested the efficiency of eye movements during search using homogeneous and heterogeneous arrays of line segments. The search target is visible in the periphery on the homogeneous array, but requires central vision to be detected on the heterogeneous array. For a compound search array that is heterogeneous on one side and homogeneous on the other, eye movements should be directed only to the heterogeneous side. Instead, participants made many fixations on the homogeneous side. By comparing search of compound arrays to an estimate of search performance based on uniform arrays, we isolate two contributions to search inefficiency. First, participants make superfluous fixations, sacrificing speed for a perceived (but not actual) gain in response certainty. Second, participants fixate the homogeneous side even more frequently than predicted by inefficient search of uniform arrays, suggesting they also fail to direct fixations to locations that yield the most new information.

摘要

进化压力使得许多物种的觅食行为变得高度高效。搜索过程中的眼动是人类觅食行为的一个有用实例。我们使用线段的同质阵列和异质阵列测试了搜索过程中眼动的效率。在同质阵列中,搜索目标在周边可见,但在异质阵列中则需要中央视觉才能检测到。对于一侧为异质而另一侧为同质的复合搜索阵列,眼动应该只指向异质侧。然而,参与者在同质侧进行了许多注视。通过将复合阵列的搜索与基于均匀阵列的搜索性能估计进行比较,我们分离出了导致搜索效率低下的两个因素。首先,参与者进行了多余的注视,为了获得感知到的(但并非实际的)反应确定性而牺牲了速度。其次,参与者在同质侧的注视频率甚至比均匀阵列低效搜索所预测的还要高,这表明他们也未能将注视指向能产生最多新信息的位置。

相似文献

1
Human visual search behaviour is far from ideal.
Proc Biol Sci. 2017 Feb 22;284(1849). doi: 10.1098/rspb.2016.2767.
2
Optimal eye movement strategies in visual search.
Nature. 2005 Mar 17;434(7031):387-91. doi: 10.1038/nature03390.
3
Visual search habits and the spatial structure of scenes.
Atten Percept Psychophys. 2022 Aug;84(6):1874-1885. doi: 10.3758/s13414-022-02506-2. Epub 2022 Jul 11.
5
The effect of the first glimpse at a scene on eye movements during search.
Psychon Bull Rev. 2012 Apr;19(2):204-10. doi: 10.3758/s13423-011-0205-7.
6
An information maximization model of eye movements.
Adv Neural Inf Process Syst. 2005;17:1121-8.
7
Parietal lobe mechanisms for directed visual attention.
J Neurophysiol. 1977 Mar;40(2):362-89. doi: 10.1152/jn.1977.40.2.362.
8
Modelling eye movements in a categorical search task.
Philos Trans R Soc Lond B Biol Sci. 2013 Sep 9;368(1628):20130058. doi: 10.1098/rstb.2013.0058. Print 2013 Oct 19.
9
Scene context guides eye movements during visual search.
Vision Res. 2006 Mar;46(5):614-21. doi: 10.1016/j.visres.2005.08.025. Epub 2005 Oct 17.

引用本文的文献

1
Investigating an effort avoidance account of attentional strategy choice.
Atten Percept Psychophys. 2024 Aug;86(6):1989-2002. doi: 10.3758/s13414-024-02927-1. Epub 2024 Jul 26.
2
Does precrastination explain why some observers are suboptimal in a visual search task?
R Soc Open Sci. 2024 Apr 24;11(4):191816. doi: 10.1098/rsos.191816. eCollection 2024 Apr.
3
Joint contributions of preview and task instructions on visual search strategy selection.
Atten Percept Psychophys. 2024 May;86(4):1163-1175. doi: 10.3758/s13414-024-02870-1. Epub 2024 Apr 24.
4
Adapting attentional control settings in a shape-changing environment.
Atten Percept Psychophys. 2024 Feb;86(2):404-421. doi: 10.3758/s13414-023-02818-x. Epub 2024 Jan 2.
5
Humans trade off search costs and accuracy in a combined visual search and perceptual task.
Atten Percept Psychophys. 2023 Jan;85(1):23-40. doi: 10.3758/s13414-022-02600-5. Epub 2022 Nov 30.
6
Visual search habits and the spatial structure of scenes.
Atten Percept Psychophys. 2022 Aug;84(6):1874-1885. doi: 10.3758/s13414-022-02506-2. Epub 2022 Jul 11.
7
Perceptual Load and Sex-Specific Personality Traits.
Exp Psychol. 2021 May;68(3):149-164. doi: 10.1027/1618-3169/a000520.
8
Search strategies improve with practice, but not with time pressure or financial incentives.
J Exp Psychol Hum Percept Perform. 2021 Jul;47(7):1009-1021. doi: 10.1037/xhp0000912.
9
Vision as oculomotor reward: cognitive contributions to the dynamic control of saccadic eye movements.
Cogn Neurodyn. 2021 Aug;15(4):547-568. doi: 10.1007/s11571-020-09661-y. Epub 2021 Jan 25.
10
Searching in CCTV: effects of organisation in the multiplex.
Cogn Res Princ Implic. 2021 Feb 18;6(1):11. doi: 10.1186/s41235-021-00277-2.

本文引用的文献

1
Inefficient search strategies in simulated hemianopia.
J Exp Psychol Hum Percept Perform. 2016 Nov;42(11):1858-1872. doi: 10.1037/xhp0000250. Epub 2016 Jul 25.
3
Failure of Intuition When Choosing Whether to Invest in a Single Goal or Split Resources Between Two Goals.
Psychol Sci. 2016 Jan;27(1):64-74. doi: 10.1177/0956797615611933. Epub 2015 Dec 8.
4
Active search for multiple targets is inefficient.
Vision Res. 2012 Dec 1;74:61-71. doi: 10.1016/j.visres.2012.08.008. Epub 2012 Aug 21.
5
A bayesian optimal foraging model of human visual search.
Psychol Sci. 2012 Sep 1;23(9):1047-54. doi: 10.1177/0956797612440460. Epub 2012 Aug 6.
6
Human visual search does not maximize the post-saccadic probability of identifying targets.
PLoS Comput Biol. 2012 Feb;8(2):e1002342. doi: 10.1371/journal.pcbi.1002342. Epub 2012 Feb 2.
7
Behavior and neural basis of near-optimal visual search.
Nat Neurosci. 2011 Jun;14(6):783-90. doi: 10.1038/nn.2814. Epub 2011 May 8.
8
Looking versus seeing: Strategies alter eye movements during visual search.
Psychon Bull Rev. 2010 Aug;17(4):543-9. doi: 10.3758/PBR.17.4.543.
9
Optimal reward harvesting in complex perceptual environments.
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):5232-7. doi: 10.1073/pnas.0911972107. Epub 2010 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验