Vaucher Alain C, Reiher Markus
Laboratorium für Physikalische Chemie, ETH Zürich , Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland.
J Chem Theory Comput. 2017 Mar 14;13(3):1219-1228. doi: 10.1021/acs.jctc.7b00011. Epub 2017 Feb 27.
The general procedure underlying Hartree-Fock and Kohn-Sham density functional theory calculations consists in optimizing orbitals for a self-consistent solution of the Roothaan-Hall equations in an iterative process. It is often ignored that multiple self-consistent solutions can exist, several of which may correspond to minima of the energy functional. In addition to the difficulty sometimes encountered to converge the calculation to a self-consistent solution, one must ensure that the correct self-consistent solution was found, typically the one with the lowest electronic energy. Convergence to an unwanted solution is in general not trivial to detect and will deliver incorrect energy and molecular properties and accordingly a misleading description of chemical reactivity. Wrong conclusions based on incorrect self-consistent field convergence are particularly cumbersome in automated calculations met in high-throughput virtual screening, structure optimizations, ab initio molecular dynamics, and in real-time explorations of chemical reactivity, where the vast amount of data can hardly be manually inspected. Here, we introduce a fast and automated approach to detect and cure incorrect orbital convergence, which is especially suited for electronic structure calculations on sequences of molecular structures. Our approach consists of a randomized perturbation of the converged electron density (matrix) intended to push orbital convergence to solutions that correspond to another stationary point (of potentially lower electronic energy) in the variational parameter space of an electronic wave function approximation.
哈特里-福克(Hartree-Fock)和科恩-沙姆(Kohn-Sham)密度泛函理论计算的一般流程是在一个迭代过程中优化轨道,以得到鲁特汉-霍尔(Roothaan-Hall)方程的自洽解。人们常常忽略的是,可能存在多个自洽解,其中一些可能对应于能量泛函的极小值。除了有时在将计算收敛到自洽解时遇到的困难外,还必须确保找到正确的自洽解,通常是具有最低电子能量的那个解。收敛到不需要的解通常很难检测到,并且会给出不正确的能量和分子性质,从而对化学反应性产生误导性描述。基于不正确的自洽场收敛得出的错误结论在高通量虚拟筛选、结构优化、从头算分子动力学以及化学反应性实时探索中遇到的自动计算中尤其麻烦,因为在这些计算中大量数据几乎无法手动检查。在这里,我们介绍一种快速且自动的方法来检测和纠正不正确的轨道收敛,该方法特别适用于对分子结构序列进行电子结构计算。我们的方法包括对收敛的电子密度(矩阵)进行随机微扰,旨在将轨道收敛推向对应于电子波函数近似变分参数空间中另一个驻点(可能具有更低电子能量)的解。