School of Computer and Artificial Intelligence, Huaihua University, Huaihua, 418000, China.
Obstetrical Department of Huaihua Second People's Hospital, Huaihua, 418000, China.
Sci Rep. 2024 Oct 31;14(1):26201. doi: 10.1038/s41598-024-77521-4.
In clinical nursing, neonatal pain assessment is a challenging task for preventing and controlling the impact of pain on neonatal development. To reduce the adverse effects of repetitive painful treatments during hospitalization on newborns, we propose a novel method (namely pain concept-cognitive computing model, PainC3M) for evaluating facial pain in newborns. In the fusion system, we first improve the attention mechanism of vision transformer by revising the node encoding way, considering the spatial structure, edge and centrality of nodes, and then use its corresponding encoder as a feature extractor to comprehensively extract image features. Second, we introduce a concept-cognitive computing model as a classifier to evaluate the level of pain. Finally, we evaluate our PainC3M on various open pain data sets and a real clinical pain data stream, and the experimental results demonstrate that our PainC3M is very effective for dynamic classification and superior to other comparative models. It also provides a good approach for pain assessment of individuals with aphasia (or dementia).
在临床护理中,新生儿疼痛评估是预防和控制疼痛对新生儿发育影响的一项具有挑战性的任务。为了减少住院期间重复疼痛治疗对新生儿的不良影响,我们提出了一种评估新生儿面部疼痛的新方法(即疼痛概念-认知计算模型,PainC3M)。在融合系统中,我们首先通过修改节点编码方式来改进视觉转换器的注意力机制,考虑节点的空间结构、边缘和中心性,然后使用其对应的编码器作为特征提取器,全面提取图像特征。其次,我们引入概念-认知计算模型作为分类器来评估疼痛程度。最后,我们在各种开放的疼痛数据集和真实的临床疼痛数据流上评估我们的 PainC3M,实验结果表明,我们的 PainC3M 非常有效地用于动态分类,优于其他比较模型。它还为失语症(或痴呆症)患者的疼痛评估提供了一种很好的方法。