Bao Shu-Di, Meng Xiao-Li, Xiao Wendong, Zhang Zhi-Qiang
School of Electronic and Information Engineering, Ningbo University of Technology, Ningbo 315200, China.
Institute for Infocomm Research, Singapore 138632, Singapore.
Sensors (Basel). 2017 Feb 10;17(2):340. doi: 10.3390/s17020340.
The wearable inertial/magnetic sensor based human motion analysis plays an important role in many biomedical applications, such as physical therapy, gait analysis and rehabilitation. One of the main challenges for the lower body bio-motion analysis is how to reliably provide position estimations of human subject during walking. In this paper, we propose a particle filter based human position estimation method using a foot-mounted inertial and magnetic sensor module, which not only uses the traditional zero velocity update (ZUPT), but also applies map information to further correct the acceleration double integration drift and thus improve estimation accuracy. In the proposed method, a simple stance phase detector is designed to identify the stance phase of a gait cycle based on gyroscope measurements. For the non-stance phase during a gait cycle, an acceleration control variable derived from ZUPT information is introduced in the process model, while vector map information is taken as binary pseudo-measurements to further enhance position estimation accuracy and reduce uncertainty of walking trajectories. A particle filter is then designed to fuse ZUPT information and binary pseudo-measurements together. The proposed human position estimation method has been evaluated with closed-loop walking experiments in indoor and outdoor environments. Results of comparison study have illustrated the effectiveness of the proposed method for application scenarios with useful map information.
基于可穿戴惯性/磁传感器的人体运动分析在许多生物医学应用中发挥着重要作用,如物理治疗、步态分析和康复。下肢生物运动分析的主要挑战之一是如何在步行过程中可靠地提供人体受试者的位置估计。在本文中,我们提出了一种基于粒子滤波器的人体位置估计方法,该方法使用安装在脚上的惯性和磁传感器模块,不仅使用传统的零速度更新(ZUPT),还应用地图信息来进一步校正加速度双重积分漂移,从而提高估计精度。在所提出的方法中,设计了一个简单的站立阶段检测器,基于陀螺仪测量来识别步态周期的站立阶段。对于步态周期中的非站立阶段,在过程模型中引入从ZUPT信息导出的加速度控制变量,同时将矢量地图信息作为二进制伪测量,以进一步提高位置估计精度并减少行走轨迹的不确定性。然后设计一个粒子滤波器将ZUPT信息和二进制伪测量融合在一起。所提出的人体位置估计方法已通过在室内和室外环境中的闭环步行实验进行了评估。比较研究结果表明了该方法在具有有用地图信息的应用场景中的有效性。