Suppr超能文献

三惯性测量单元行人导航系统用于剧烈运动。

Pedestrian Navigation System with Trinal-IMUs for Drastic Motions.

机构信息

College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.

出版信息

Sensors (Basel). 2020 Sep 29;20(19):5570. doi: 10.3390/s20195570.

Abstract

The combination of biomechanics and inertial pedestrian navigation research provides a very promising approach for pedestrian positioning in environments where Global Positioning System (GPS) signal is unavailable. However, in practical applications such as fire rescue and indoor security, the inertial sensor-based pedestrian navigation system is facing various challenges, especially the step length estimation errors and heading drift in running and sprint. In this paper, a trinal-node, including two thigh-worn inertial measurement units (IMU) and one waist-worn IMU, based simultaneous localization and occupation grid mapping method is proposed. Specifically, the gait detection and segmentation are realized by the zero-crossing detection of the difference of thighs pitch angle. A piecewise function between the step length and the probability distribution of waist horizontal acceleration is established to achieve accurate step length estimation both in regular walking and drastic motions. In addition, the simultaneous localization and mapping method based on occupancy grids, which involves the historic trajectory to improve the pedestrian's pose estimation is introduced. The experiments show that the proposed trinal-node pedestrian inertial odometer can identify and segment each gait cycle in the walking, running, and sprint. The average step length estimation error is no more than 3.58% of the total travel distance in the motion speed from 1.23 m/s to 3.92 m/s. In combination with the proposed simultaneous localization and mapping method based on the occupancy grid, the localization error is less than 5 m in a single-story building of 2643.2 m2.

摘要

生物力学和惯性行人导航研究的结合为行人在无法使用全球定位系统 (GPS) 信号的环境中的定位提供了一种很有前途的方法。然而,在实际应用中,如火灾救援和室内安全,基于惯性传感器的行人导航系统面临着各种挑战,特别是在跑步和冲刺中步长估计误差和航向漂移。本文提出了一种基于三体节点的行人惯性导航系统,包括两个大腿佩戴的惯性测量单元 (IMU) 和一个腰部佩戴的 IMU。具体来说,通过大腿俯仰角差值的过零检测实现步态检测和分段。建立了步长与腰部水平加速度概率分布之间的分段函数,以实现在常规行走和剧烈运动中准确的步长估计。此外,还介绍了基于占据网格的同时定位和映射方法,该方法涉及历史轨迹以提高行人的姿势估计。实验表明,所提出的三体节点行人惯性里程计可以识别和分段行走、跑步和冲刺中的每个步态周期。在 1.23 米/秒至 3.92 米/秒的运动速度下,平均步长估计误差不超过总行程的 3.58%。结合基于占据网格的提出的同时定位和映射方法,在 2643.2 平方米的单层建筑物中,定位误差小于 5 米。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/568d/7583883/f4b5387d0b1e/sensors-20-05570-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验