Suppr超能文献

使用运动补偿全变差正则化的高质量4D锥束CT重建。

High quality 4D cone-beam CT reconstruction using motion-compensated total variation regularization.

作者信息

Zhang Hua, Ma Jianhua, Bian Zhaoying, Zeng Dong, Feng Qianjin, Chen Wufan

机构信息

Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangdong, Guangzhou 510515, People's Republic of China.

出版信息

Phys Med Biol. 2017 Apr 21;62(8):3313-3329. doi: 10.1088/1361-6560/aa6128. Epub 2017 Feb 17.

Abstract

Four dimensional cone-beam computed tomography (4D-CBCT) has great potential clinical value because of its ability to describe tumor and organ motion. But the challenge in 4D-CBCT reconstruction is the limited number of projections at each phase, which result in a reconstruction full of noise and streak artifacts with the conventional analytical algorithms. To address this problem, in this paper, we propose a motion compensated total variation regularization approach which tries to fully explore the temporal coherence of the spatial structures among the 4D-CBCT phases. In this work, we additionally conduct motion estimation/motion compensation (ME/MC) on the 4D-CBCT volume by using inter-phase deformation vector fields (DVFs). The motion compensated 4D-CBCT volume is then viewed as a pseudo-static sequence, of which the regularization function was imposed on. The regularization used in this work is the 3D spatial total variation minimization combined with 1D temporal total variation minimization. We subsequently construct a cost function for a reconstruction pass, and minimize this cost function using a variable splitting algorithm. Simulation and real patient data were used to evaluate the proposed algorithm. Results show that the introduction of additional temporal correlation along the phase direction can improve the 4D-CBCT image quality.

摘要

四维锥形束计算机断层扫描(4D-CBCT)因其能够描述肿瘤和器官运动而具有巨大的潜在临床价值。但4D-CBCT重建面临的挑战是每个相位的投影数量有限,这使得传统分析算法重建出的图像充满噪声和条纹伪影。为解决这一问题,本文提出一种运动补偿全变差正则化方法,该方法试图充分探索4D-CBCT各相位间空间结构的时间相干性。在这项工作中,我们还通过使用相间变形矢量场(DVF)对4D-CBCT体数据进行运动估计/运动补偿(ME/MC)。然后将运动补偿后的4D-CBCT体数据视为一个伪静态序列,并对其施加正则化函数。本文使用的正则化是将3D空间全变差最小化与1D时间全变差最小化相结合。随后,我们为重建过程构建一个代价函数,并使用变量分裂算法对该代价函数进行最小化。使用模拟数据和真实患者数据对所提算法进行评估。结果表明,沿相位方向引入额外的时间相关性可以提高4D-CBCT图像质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验