Department of Materials Science and Engineering, Lehigh University , 5 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States.
ACS Nano. 2017 Mar 28;11(3):3337-3346. doi: 10.1021/acsnano.7b00696. Epub 2017 Feb 21.
Biomineralization is an intriguing approach to the synthesis of functional inorganic materials for energy applications whereby biological systems are engineered to mineralize inorganic materials and control their structure over multiple length scales under mild reaction conditions. Herein we demonstrate a single-enzyme-mediated biomineralization route to synthesize crystalline, catalytically active, quantum-confined ceria (CeO) and ceria-zirconia (CeZrO) nanocrystals for application as environmental catalysts. In contrast to typical anthropogenic synthesis routes, the crystalline oxide nanoparticles are formed at room temperature from an otherwise inert aqueous solution without the addition of a precipitant or additional reactant. An engineered form of silicatein, rCeSi, as a single enzyme not only catalyzes the direct biomineralization of the nanocrystalline oxides but also serves as a templating agent to control their morphological structure. The biomineralized nanocrystals of less than 3 nm in diameter are catalytically active toward carbon monoxide oxidation following an oxidative annealing step to remove carbonaceous residue. The introduction of zirconia into the nanocrystals leads to an increase in Ce(III) concentration, associated catalytic activity, and the thermal stability of the nanocrystals.
生物矿化是一种有趣的方法,用于合成用于能源应用的功能性无机材料,通过该方法,对生物系统进行工程设计,以在温和的反应条件下,在多个长度尺度上矿化无机材料并控制其结构。在此,我们展示了一种单酶介导的生物矿化途径,用于合成结晶、催化活性、量子受限的氧化铈 (CeO) 和氧化铈-氧化锆 (CeZrO) 纳米晶体,将其用作环境催化剂。与典型的人为合成途径相比,在室温下从原本惰性的水溶液中形成结晶氧化物纳米粒子,而无需添加沉淀剂或其他反应物。作为一种单一酶的工程形式的硅蛋白 rCeSi 不仅催化纳米晶氧化物的直接生物矿化,而且还用作模板剂来控制其形态结构。经过氧化退火步骤以去除含碳残留物后,直径小于 3nm 的生物矿化纳米晶对一氧化碳氧化具有催化活性。将氧化锆引入纳米晶中会导致 Ce(III)浓度增加、相关催化活性提高以及纳米晶的热稳定性提高。