Dunleavy Robert, Lu Li, Kiely Christopher J, McIntosh Steven, Berger Bryan W
Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015;
Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015;
Proc Natl Acad Sci U S A. 2016 May 10;113(19):5275-80. doi: 10.1073/pnas.1523633113. Epub 2016 Apr 26.
Nature has evolved several unique biomineralization strategies to direct the synthesis and growth of inorganic materials. These natural systems are complex, involving the interaction of multiple biomolecules to catalyze biomineralization and template growth. Herein we describe the first report to our knowledge of a single enzyme capable of both catalyzing mineralization in otherwise unreactive solution and of templating nanocrystal growth. A recombinant putative cystathionine γ-lyase (smCSE) mineralizes CdS from an aqueous cadmium acetate solution via reactive H2S generation from l-cysteine and controls nanocrystal growth within the quantum confined size range. The role of enzymatic nanocrystal templating is demonstrated by substituting reactive Na2S as the sulfur source. Whereas bulk CdS is formed in the absence of the enzyme or other capping agents, nanocrystal formation is observed when smCSE is present to control the growth. This dual-function, single-enzyme, aerobic, and aqueous route to functional material synthesis demonstrates the powerful potential of engineered functional material biomineralization.
大自然进化出了几种独特的生物矿化策略来指导无机材料的合成与生长。这些自然系统很复杂,涉及多种生物分子的相互作用以催化生物矿化并引导晶体生长。在此,据我们所知,我们首次报道了一种单一酶,它既能在原本无反应的溶液中催化矿化,又能引导纳米晶体生长。一种重组推定的胱硫醚γ-裂合酶(smCSE)通过从L-半胱氨酸生成反应性硫化氢,从乙酸镉水溶液中使硫化镉矿化,并在量子限制尺寸范围内控制纳米晶体的生长。通过用反应性硫化钠替代硫源,证明了酶促纳米晶体模板的作用。在没有酶或其他封端剂的情况下会形成块状硫化镉,而当存在smCSE来控制生长时,则会观察到纳米晶体的形成。这种用于功能材料合成的双功能、单一酶、需氧且在水溶液中的途径展示了工程功能材料生物矿化的强大潜力。