Suppr超能文献

利用海洋微生物酶对海洋有机物中的海带多糖进行准确量化

Accurate Quantification of Laminarin in Marine Organic Matter with Enzymes from Marine Microbes.

作者信息

Becker Stefan, Scheffel André, Polz Martin F, Hehemann Jan-Hendrik

机构信息

Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.

Max Planck Institute for Marine Microbiology, Bremen, Germany.

出版信息

Appl Environ Microbiol. 2017 Apr 17;83(9). doi: 10.1128/AEM.03389-16. Print 2017 May 1.

Abstract

Marine algae produce a variety of glycans, which fulfill diverse biological functions and fuel the carbon and energy demands of heterotrophic microbes. A common approach to analysis of marine organic matter uses acid to hydrolyze the glycans into measurable monosaccharides. The monosaccharides may be derived from different glycans that are built with the same monosaccharides, however, and this approach does not distinguish between glycans in natural samples. Here we use enzymes to digest selectively and thereby quantify laminarin in particulate organic matter. Environmental metaproteome data revealed carbohydrate-active enzymes from marine flavobacteria as tools for selective hydrolysis of the algal β-glucan laminarin. The enzymes digested laminarin into glucose and oligosaccharides, which we measured with standard methods to establish the amounts of laminarin in the samples. We cloned, expressed, purified, and characterized three new glycoside hydrolases (GHs) of bacteria: two are endo-β-1,3-glucanases, of the GH16 and GH17 families, and the other is a GH30 exo-β-1,6-glucanase. sp. nov strain Hel1_33_131 GH30 (FbGH30) removed the β-1,6-glucose side chains, and GH17A (FaGH17A) and FaGH16A hydrolyzed the β-1,3-glucose backbone of laminarin. Specificity profiling with a library of glucan oligosaccharides and polysaccharides revealed that FaGH17A and FbGH30 were highly specific enzymes, while FaGH16A also hydrolyzed mixed-linked glucans with β-1,4-glucose. Therefore, we chose the more specific FaGH17A and FbGH30 to quantify laminarin in two cultured diatoms, namely, and , and in seawater samples from the North Sea and the Arctic Ocean. Combined, these results demonstrate the potential of enzymes for faster, stereospecific, and sequence-specific analysis of select glycans in marine organic matter. Marine algae synthesize substantial amounts of the glucose polymer laminarin for energy and carbon storage. Its concentrations, rates of production by autotrophic organisms, and rates of digestion by heterotrophic organisms remain unknown. Here we present a method based on enzymes that hydrolyze laminarin and enable its quantification even in crude substrate mixtures, without purification. Compared to the commonly used acid hydrolysis, the enzymatic method presented here is faster and stereospecific and selectively cleaves laminarin in mixtures of glycans, releasing only glucose and oligosaccharides, which can be easily quantified with reducing sugar assays.

摘要

海洋藻类产生多种聚糖,这些聚糖具有多种生物学功能,并满足异养微生物的碳和能量需求。分析海洋有机物的一种常用方法是使用酸将聚糖水解为可测量的单糖。然而,单糖可能来自由相同单糖构成的不同聚糖,并且这种方法无法区分天然样品中的聚糖。在这里,我们使用酶进行选择性消化,从而定量颗粒有机物中的海带多糖。环境元蛋白质组数据显示,海洋黄杆菌的碳水化合物活性酶可作为选择性水解藻类β-葡聚糖海带多糖的工具。这些酶将海带多糖消化成葡萄糖和寡糖,我们用标准方法测量这些物质以确定样品中海带多糖的含量。我们克隆、表达、纯化并鉴定了三种新的细菌糖苷水解酶(GHs):两种是GH16和GH17家族的内切β-1,3-葡聚糖酶,另一种是GH30外切β-1,6-葡聚糖酶。新种Hel1_33_131菌株的GH30(FbGH30)去除β-1,6-葡萄糖侧链,而GH17A(FaGH17A)和FaGH16A水解海带多糖的β-1,3-葡萄糖主链。用葡聚糖寡糖和多糖文库进行特异性分析表明,FaGH17A和FbGH30是高度特异性的酶,而FaGH16A也能水解含有β-1,4-葡萄糖的混合连接葡聚糖。因此,我们选择更具特异性的FaGH17A和FbGH30来定量两种培养硅藻(即 和 )以及北海和北冰洋海水样品中的海带多糖。综合来看,这些结果证明了酶在更快、立体特异性和序列特异性分析海洋有机物中特定聚糖方面的潜力。海洋藻类合成大量葡萄糖聚合物海带多糖用于能量和碳储存。其浓度、自养生物的生产速率以及异养生物的消化速率仍然未知。在这里,我们提出了一种基于酶的方法,该方法可水解海带多糖,甚至能在未经纯化的粗底物混合物中对其进行定量。与常用的酸水解相比,这里介绍的酶法更快、具有立体特异性,并且能在聚糖混合物中选择性地切割海带多糖,仅释放出葡萄糖和寡糖,这些物质可以通过还原糖测定法轻松定量。

相似文献

7
Laminarin is a major molecule in the marine carbon cycle.昆布多糖是海洋碳循环中的主要分子。
Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6599-6607. doi: 10.1073/pnas.1917001117. Epub 2020 Mar 13.
10
Characterization of the GH16 and GH17 laminarinases from Vibrio breoganii 1C10.鉴定海洋弧菌 1C10 中的 GH16 和 GH17 昆布多糖酶。
Appl Microbiol Biotechnol. 2020 Jan;104(1):161-171. doi: 10.1007/s00253-019-10243-0. Epub 2019 Nov 21.

引用本文的文献

1
Activity-Based Tracking of Glycan Turnover in Microbiomes.基于活性的微生物群落中聚糖周转追踪
J Am Chem Soc. 2025 Jul 23;147(29):25799-25805. doi: 10.1021/jacs.5c07546. Epub 2025 Jul 8.
5
Polysaccharide quantification using microbial enzyme cocktails.使用微生物酶混合物进行多糖定量分析。
Biol Methods Protoc. 2025 Feb 22;10(1):bpaf014. doi: 10.1093/biomethods/bpaf014. eCollection 2025.
6
Marine produce zeaxanthin via the mevalonate pathway.海洋生物通过甲羟戊酸途径产生玉米黄质。
Mar Life Sci Technol. 2025 Jan 7;7(1):132-143. doi: 10.1007/s42995-024-00268-4. eCollection 2025 Feb.
9
Automated Synthesis of Algal Fucoidan Oligosaccharides.藻源岩藻聚糖寡糖的自动化合成。
J Am Chem Soc. 2024 Jul 10;146(27):18320-18330. doi: 10.1021/jacs.4c02348. Epub 2024 Jun 25.
10
Blue Biotechnology: Marine Bacteria Bioproducts.蓝色生物技术:海洋细菌生物制品
Microorganisms. 2024 Mar 29;12(4):697. doi: 10.3390/microorganisms12040697.

本文引用的文献

2
Deciphering ocean carbon in a changing world.在不断变化的世界中解读海洋碳
Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):3143-51. doi: 10.1073/pnas.1514645113. Epub 2016 Mar 7.
9
The carbohydrate-active enzymes database (CAZy) in 2013.2013 版碳水化合物活性酶数据库(CAZy)。
Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5. doi: 10.1093/nar/gkt1178. Epub 2013 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验