Plantlab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa 56127, Italy.
Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK.
Plant Physiol. 2022 Jun 1;189(2):1153-1168. doi: 10.1093/plphys/kiac122.
Synthetic biology approaches to engineer light-responsive systems are widely used, but their applications in plants are still limited due to the interference with endogenous photoreceptors and the intrinsic requirement of light for photosynthesis. Cyanobacteria possess a family of soluble carotenoid-associated proteins named orange carotenoid proteins (OCPs) that, when activated by blue-green light, undergo a reversible conformational change that enables the photoprotection mechanism that occurs on the phycobilisome. Exploiting this system, we developed a chloroplast-localized synthetic photoswitch based on a protein complementation assay where two nanoluciferase fragments were fused to separate polypeptides corresponding to the OCP2 domains. Since Arabidopsis (Arabidopsis thaliana) does not possess the prosthetic group needed for the assembly of the OCP2 complex, we first implemented the carotenoid biosynthetic pathway with a bacterial β-carotene ketolase enzyme (crtW) to generate keto-carotenoid-producing plants. The photoswitch was tested and characterized in Arabidopsis protoplasts and stably transformed plants with experiments aimed to uncover its regulation by a range of light intensities, wavelengths, and its conversion dynamics. Finally, we applied the OCP-based photoswitch to control transcriptional responses in chloroplasts in response to green light illumination by fusing the two OCP fragments with the plastidial SIGMA FACTOR 2 and bacteriophage T4 anti-sigma factor AsiA. This pioneering study establishes the basis for future implementation of plastid optogenetics to regulate organelle responses upon exposure to specific light spectra.
合成生物学方法被广泛用于工程光响应系统,但由于与内源性光受体的干扰以及光合作用对光的内在要求,其在植物中的应用仍然有限。蓝细菌拥有一系列可溶性类胡萝卜素相关蛋白,称为橙色类胡萝卜素蛋白(OCP),当被蓝绿光激活时,会发生可逆的构象变化,从而启动藻胆体上发生的光保护机制。利用这个系统,我们开发了一种基于蛋白互补测定的叶绿体定位合成光开关,其中两个纳米荧光素酶片段融合到分别对应 OCP2 结构域的两个多肽上。由于拟南芥(Arabidopsis thaliana)没有组装 OCP2 复合物所需的辅基,我们首先用细菌 β-胡萝卜素酮酶酶(crtW)实现类胡萝卜素生物合成途径,以产生生产酮类胡萝卜素的植物。在拟南芥原生质体和稳定转化的植物中对光开关进行了测试和表征,实验旨在揭示其对一系列光强度、波长的调节及其转换动力学。最后,我们通过将两个 OCP 片段与质体 SIGMA FACTOR 2 和噬菌体 T4 抗 sigma 因子 AsiA 融合,将 OCP 为基础的光开关应用于控制绿色光照射下叶绿体中的转录反应。这项开创性的研究为未来在特定光谱光暴露下调节细胞器反应的质体光遗传学实施奠定了基础。