Marmolejo-Murillo Leticia G, Aréchiga-Figueroa Iván A, Moreno-Galindo Eloy G, Navarro-Polanco Ricardo A, Rodríguez-Menchaca Aldo A, Cui Meng, Sánchez-Chapula José A, Ferrer Tania
Unidad de Investigación "Carlos Méndez" del Centro U. de Investigaciones Biomédicas de la Universidad de Colima, Mexico.
Conacyt - Universidad Autónoma de San Luis Potosí. Facultad de Medicina, Ave. V. Carranza 2405, San Luis Potosí, SLP 78290 Mexico.
Eur J Pharmacol. 2017 Apr 5;800:40-47. doi: 10.1016/j.ejphar.2017.02.024. Epub 2017 Feb 20.
Kir4.1 channels have been implicated in various physiological processes, mainly in the K homeostasis of the central nervous system and in the control of glial function and neuronal excitability. Even though, pharmacological research of these channels is very limited. Chloroquine (CQ) is an amino quinolone derivative known to inhibit Kir2.1 and Kir6.2 channels with different action mechanism and binding site. Here, we employed patch-clamp methods, mutagenesis analysis, and molecular modeling to characterize the molecular pharmacology of Kir4.1 inhibition by CQ. We found that this drug inhibits Kir4.1 channels heterologously expressed in HEK-293 cells. CQ produced a fast-onset voltage-dependent pore-blocking effect on these channels. In inside-out patches, CQ showed notable higher potency (IC ≈0.5μM at +50mV) and faster onset of block when compared to whole-cell configuration (IC ≈7μM at +60mV). Also, CQ showed a voltage-dependent unblock with repolarization. These results suggest that the drug directly blocks Kir4.1 channels by a pore-plugging mechanism. Moreover, we found that two residues (Thr128 and Glu158), facing the central cavity and located within the transmembrane pore, are particularly important structural determinants of CQ block. This evidence was similar to what was previously reported with Kir6.2, but distinct from the interaction site (cytoplasmic pore) CQ-Kir2.1. Thus, our findings highlight the diversity of interaction sites and mechanisms that underlie amino quinolone inhibition of Kir channels.
Kir4.1通道参与了多种生理过程,主要涉及中枢神经系统的钾离子稳态以及对神经胶质细胞功能和神经元兴奋性的调控。尽管如此,针对这些通道的药理学研究却非常有限。氯喹(CQ)是一种氨基喹啉衍生物,已知它能通过不同的作用机制和结合位点抑制Kir2.1和Kir6.2通道。在此,我们运用膜片钳技术、诱变分析和分子建模来表征CQ对Kir4.1的抑制作用的分子药理学特性。我们发现这种药物能够抑制在HEK - 293细胞中异源表达的Kir4.1通道。CQ对这些通道产生了快速起效的电压依赖性孔道阻断效应。在内外向外膜片模式下,与全细胞模式相比(在 +60mV时IC≈7μM),CQ在 +50mV时显示出显著更高的效力(IC≈0.5μM)和更快的阻断起效速度。此外,CQ在复极化时表现出电压依赖性的解除阻断。这些结果表明该药物通过孔道堵塞机制直接阻断Kir4.1通道。而且,我们发现位于跨膜孔道内且面向中央腔的两个残基(Thr128和Glu158)是CQ阻断作用的特别重要的结构决定因素。这一证据与先前关于Kir6.2的报道相似,但与CQ - Kir2.1的相互作用位点(胞质孔道)不同。因此,我们的研究结果突出了氨基喹啉对Kir通道抑制作用的相互作用位点和机制的多样性。