Suppr超能文献

基于表面肌电图和加速度测量技术对截肢者多功能手指和手腕运动的持续识别

Continuous Recognition of Multifunctional Finger and Wrist Movements in Amputee Subjects Based on sEMG and Accelerometry.

作者信息

Liu Junhong, Chen Wanzhong, Li Mingyang, Kang Xiaotao

机构信息

Department of Communication Engineering, Jilin University, 130012 Changchun, China.

出版信息

Open Biomed Eng J. 2016 Nov 30;10:101-110. doi: 10.2174/1874120701610010101. eCollection 2016.

Abstract

BACKGROUND

While the classification of multifunctional finger and wrist movement based on surface electromyography (sEMG) signals in intact subjects can reach remarkable recognition rates, the performance obtained from amputated subjects remained low.

METHODS

In this paper, we proposed and evaluated the myoelectric control scheme of upper-limb prostheses by the continuous recognition of 17 multifunctional finger and wrist movements on 5 amputated subjects. Experimental validation was applied to select optimal features and classifiers for identifying sEMG and accelerometry (ACC) modalities under the windows-based analysis scheme. The majority vote is adopted to eliminate transient jumps and produces smooth output for window-based analysis scheme. Furthermore, principle component analysis was employed to reduce the dimension of features and to eliminate redundancy for ACC signal. Then a novel metric, namely movement error rate, was also employed to evaluate the performance of the continuous recognition framework proposed herein.

RESULTS

The average accuracy rates of classification were up to 88.7 ± 2.6% over 5 amputated subjects, which was an outstanding result in comparison with the previous literature.

CONCLUSION

The proposed technique was proven to be a potential candidate for intelligent prosthetic systems, which would increase quality of life for amputated subjects.

摘要

背景

虽然基于完整受试者表面肌电图(sEMG)信号的多功能手指和手腕运动分类能够达到较高的识别率,但截肢受试者的识别性能仍然较低。

方法

在本文中,我们通过对5名截肢受试者的17种多功能手指和手腕运动进行连续识别,提出并评估了上肢假肢的肌电控制方案。在基于窗口的分析方案下,应用实验验证来选择用于识别sEMG和加速度计(ACC)模式的最佳特征和分类器。采用多数投票来消除瞬态跳跃,并为基于窗口的分析方案生成平滑输出。此外,采用主成分分析来降低特征维度并消除ACC信号的冗余。然后,还采用了一种新的指标,即运动错误率,来评估本文提出的连续识别框架的性能。

结果

5名截肢受试者的平均分类准确率高达88.7±2.6%,与以往文献相比,这是一个出色的结果。

结论

所提出的技术被证明是智能假肢系统的潜在候选技术,这将提高截肢受试者的生活质量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验