Kuzborskij Ilja, Gijsberts Arjan, Caputo Barbara
Idiap Research Institute, Centre Du Parc, Rue Marconi 19, CH-1920 Martigny, Switzerland.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4931-7. doi: 10.1109/EMBC.2012.6347099.
The level of dexterity of myoelectric hand prostheses depends to large extent on the feature representation and subsequent classification of surface electromyography signals. This work presents a comparison of various feature extraction and classification methods on a large-scale surface electromyography database containing 52 different hand movements obtained from 27 subjects. Results indicate that simple feature representations as Mean Absolute Value and Waveform Length can achieve similar performance to the computationally more demanding marginal Discrete Wavelet Transform. With respect to classifiers, the Support Vector Machine was found to be the only method that consistently achieved top performance in combination with each feature extraction method.
肌电假手的灵巧程度在很大程度上取决于表面肌电信号的特征表示及后续分类。这项工作对一个大规模表面肌电数据库中的各种特征提取和分类方法进行了比较,该数据库包含从27名受试者获得的52种不同手部动作。结果表明,像均值绝对值和波形长度这样简单的特征表示能够实现与计算要求更高的边际离散小波变换相似的性能。关于分类器,支持向量机被发现是唯一一种在与每种特征提取方法结合时始终能取得最佳性能的方法。