Suppr超能文献

论从表面肌电图对52种手部动作进行分类的挑战。

On the challenge of classifying 52 hand movements from surface electromyography.

作者信息

Kuzborskij Ilja, Gijsberts Arjan, Caputo Barbara

机构信息

Idiap Research Institute, Centre Du Parc, Rue Marconi 19, CH-1920 Martigny, Switzerland.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4931-7. doi: 10.1109/EMBC.2012.6347099.

Abstract

The level of dexterity of myoelectric hand prostheses depends to large extent on the feature representation and subsequent classification of surface electromyography signals. This work presents a comparison of various feature extraction and classification methods on a large-scale surface electromyography database containing 52 different hand movements obtained from 27 subjects. Results indicate that simple feature representations as Mean Absolute Value and Waveform Length can achieve similar performance to the computationally more demanding marginal Discrete Wavelet Transform. With respect to classifiers, the Support Vector Machine was found to be the only method that consistently achieved top performance in combination with each feature extraction method.

摘要

肌电假手的灵巧程度在很大程度上取决于表面肌电信号的特征表示及后续分类。这项工作对一个大规模表面肌电数据库中的各种特征提取和分类方法进行了比较,该数据库包含从27名受试者获得的52种不同手部动作。结果表明,像均值绝对值和波形长度这样简单的特征表示能够实现与计算要求更高的边际离散小波变换相似的性能。关于分类器,支持向量机被发现是唯一一种在与每种特征提取方法结合时始终能取得最佳性能的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验