Brannigan K, Griffin M
Whiston Hospital, Warrington Road, Prescot, L35 5DR, Whiston, UK.
Division of Surgery & Interventional Science, University College London, London, UK.
Open Orthop J. 2016 Dec 30;10:808-823. doi: 10.2174/1874325001610010808. eCollection 2016.
Bone differs from other organs in that it can regenerate and remodel without scar formation. There are instances of trauma, congenital bone disorder, bone disease and bone cancer where this is not possible. Without bone grafts and implants, deformity and disability would result. Human bone grafts are limited in their management of large or non-union fractures. In response, synthetic bone grafts and implants are available to the Orthopaedic Surgeon. Unfortunately these also have their limitations and associated complications. Nanotechnology involves the research, design and manufacture of materials with a grain size less than 100nm. Nano-phase materials follow the laws of quantum physics, not classical mechanics, resulting in novel behavioural differences compared to conventional counterparts.
Past, present and future nanotechnology in bone healing literature is reviewed and discussed. The article highlights concepts which are likely to be instrumental to the future of nanotechnology in bone healing.
Nanotechnology in bone healing is an emerging field within Orthopaedic Surgery. There is a requirement for bone healing technologies which are biochemically and structurally similar to bone. Nanotechnology is a potential solution as the arrangement of bone includes nanoscopic collagen fibres and hydroxyapatite. This review centers on the novel field of nanotechnology in bone healing with discussion focusing on advances in bone grafts, implants, diagnostics and drug delivery.
The concept of nanotechnology was first introduced in 1959. Current nanoproducts for bone healing include nano-HA-paste-ostim and nano-beta-tricalcium phosphate-Vitoss. Nanophase technologies are considered to be superior bone healing solutions. Limited safety data and issues regarding cost and mass scale production require further research into this exciting field.
骨骼与其他器官不同,它能够再生和重塑且不会形成瘢痕。然而,在创伤、先天性骨疾病、骨病和骨癌的某些情况下,骨骼无法自行完成这些过程。如果没有骨移植和植入物,将会导致畸形和残疾。人体骨移植在处理大面积骨折或骨不连时存在局限性。作为应对措施,整形外科医生可使用合成骨移植材料和植入物。不幸的是,这些材料也有其局限性及相关并发症。纳米技术涉及研究、设计和制造晶粒尺寸小于100纳米的材料。纳米相材料遵循量子物理定律,而非经典力学定律,因此与传统材料相比具有新的行为差异。
回顾并讨论了骨愈合文献中过去、现在和未来的纳米技术。本文重点介绍了一些可能对纳米技术在骨愈合领域的未来发展具有重要作用的概念。
骨愈合中的纳米技术是整形外科领域一个新兴的研究方向。目前需要在生物化学和结构上与骨骼相似的骨愈合技术。纳米技术是一个潜在的解决方案,因为骨骼的结构包括纳米级的胶原纤维和羟基磷灰石。本文综述聚焦于骨愈合中纳米技术这一新兴领域,讨论重点在于骨移植、植入物、诊断和药物递送方面的进展。
纳米技术的概念最早于1959年提出。目前用于骨愈合的纳米产品包括纳米羟基磷灰石糊剂 - 骨刺激素和纳米β - 磷酸三钙 - 维托斯。纳米相技术被认为是更优的骨愈合解决方案。有限的安全数据以及成本和大规模生产方面的问题,需要对这个令人兴奋的领域进行进一步研究。