Suppr超能文献

头孢唑林包埋可生物降解多肽纳米薄膜有望用于感染预防:细胞反应的初步研究。

Cefazolin embedded biodegradable polypeptide nanofilms promising for infection prevention: a preliminary study on cell responses.

机构信息

Biomaterials, Bioengineering & Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, West Virginia 26506-9196, USA.

出版信息

J Orthop Res. 2010 Aug;28(8):992-9. doi: 10.1002/jor.21115.

Abstract

Implant-associated infection is a serious complication in orthopedic surgery, and endowing implant surfaces with antibacterial properties could be one of the most promising approaches for preventing such infection. In this study, we developed cefazolin loaded biodegradable polypeptide multilayer nanofilms on orthopedic implants. We found that the amount of cefazolin released could be tuned. A high local concentration of cefazolin was achieved within the first a few hours and therefore may inhibit bacterial colonization in the critical postimplantation period. The developed cefazolin loaded nanofilms showed their in vitro efficacy against Staphylococcus aureus; the more antibiotics loaded, the longer the nanocoated implant had antibacterial properties. More interestingly, antibiotic-loaded polypeptide multilayer nanofilms also improved osteoblast bioactivity including cell viability and proliferation. These findings suggested that biodegradable polypeptide multilayer nanofilms as antibiotic carriers at the implant/tissue interface are compatible with human cells such as osteoblasts and bactericidal to bacteria such as S. aureus. These characteristics could be promising for preventing implant-associated infection and potentially improving bone healing.

摘要

植入物相关感染是骨科手术中的一种严重并发症,赋予植入物表面抗菌性能可能是预防这种感染的最有前途的方法之一。在这项研究中,我们在骨科植入物上开发了头孢唑啉负载的可生物降解多肽多层纳米薄膜。我们发现可以调节头孢唑啉的释放量。在最初的几个小时内,实现了头孢唑啉的高局部浓度,因此可能会抑制植入后的关键时期细菌的定植。所开发的载头孢唑啉纳米薄膜表现出对金黄色葡萄球菌的体外功效;负载的抗生素越多,纳米涂层植入物具有抗菌性能的时间就越长。更有趣的是,载抗生素的多肽多层纳米薄膜也提高了成骨细胞的生物活性,包括细胞活力和增殖。这些发现表明,可生物降解的多肽多层纳米薄膜作为植入物/组织界面的抗生素载体与成骨细胞等人类细胞相容,并对金黄色葡萄球菌等细菌具有杀菌作用。这些特性可能有望预防植入物相关感染,并有可能改善骨愈合。

相似文献

2
4
Tunable drug loading and release from polypeptide multilayer nanofilms.
Int J Nanomedicine. 2009;4:37-53. doi: 10.2147/ijn.s4970. Epub 2009 Apr 1.
5
Bioactive titanium implant surfaces with bacterial inhibition and osteoblast function enhancement properties.
Int J Artif Organs. 2008 Sep;31(9):777-85. doi: 10.1177/039139880803100905.
6
Antibiotic-Loaded MMT/PLL-Based Coating on the Surface of Endosseous Implants to Suppress Bacterial Infections.
Int J Nanomedicine. 2021 Apr 21;16:2983-2994. doi: 10.2147/IJN.S299154. eCollection 2021.
9
Nanocolumnar coatings with selective behavior towards osteoblast and Staphylococcus aureus proliferation.
Acta Biomater. 2015 Mar;15:20-8. doi: 10.1016/j.actbio.2014.12.023. Epub 2015 Jan 5.
10
Nanostructured materials for inhibition of bacterial adhesion in orthopedic implants: a minireview.
Int J Artif Organs. 2008 Sep;31(9):771-6. doi: 10.1177/039139880803100904.

引用本文的文献

1
Recent advances in the application of nanotechnology in joint arthroplasty: a narrative review.
Ann Jt. 2025 Apr 22;10:13. doi: 10.21037/aoj-24-50. eCollection 2025.
2
Struggling with a cefazolin impregnation protocol of bone chips.
Cell Tissue Bank. 2025 Feb 24;26(2):11. doi: 10.1007/s10561-025-10164-5.
3
Nanostructures in Orthopedics: Advancing Diagnostics, Targeted Therapies, and Tissue Regeneration.
Materials (Basel). 2024 Dec 17;17(24):6162. doi: 10.3390/ma17246162.
4
A mini-review on the emerging role of nanotechnology in revolutionizing orthopedic surgery: challenges and the road ahead.
Front Bioeng Biotechnol. 2023 May 16;11:1191509. doi: 10.3389/fbioe.2023.1191509. eCollection 2023.
6
Capsule-Integrated Polypeptide Multilayer Films for Effective pH-Responsive Multiple Drug Co-Delivery.
ACS Appl Mater Interfaces. 2018 Dec 26;10(51):44267-44278. doi: 10.1021/acsami.8b17264. Epub 2018 Dec 14.
8
An Update into the Application of Nanotechnology in Bone Healing.
Open Orthop J. 2016 Dec 30;10:808-823. doi: 10.2174/1874325001610010808. eCollection 2016.
9
Nanotechnology in orthopedics.
J Orthop. 2016 Oct 25;14(1):30-33. doi: 10.1016/j.jor.2016.10.026. eCollection 2017 Mar.

本文引用的文献

1
Tunable drug loading and release from polypeptide multilayer nanofilms.
Int J Nanomedicine. 2009;4:37-53. doi: 10.2147/ijn.s4970. Epub 2009 Apr 1.
2
Multilayer polypeptide nanoscale coatings incorporating IL-12 for the prevention of biomedical device-associated infections.
Biomaterials. 2009 May;30(13):2552-8. doi: 10.1016/j.biomaterials.2009.01.042. Epub 2009 Feb 12.
4
Reducing implant-related infections: active release strategies.
Chem Soc Rev. 2006 Sep;35(9):780-9. doi: 10.1039/b515219b. Epub 2006 May 5.
5
Inhibition of epsilon-poly-L-lysine biosynthesis in Streptomycetaceae bacteria by short-chain polyols.
Appl Environ Microbiol. 2006 Apr;72(4):2306-12. doi: 10.1128/AEM.72.4.2306-2312.2006.
6
Adult osteomyelitis.
Infect Dis Clin North Am. 2005 Dec;19(4):765-86. doi: 10.1016/j.idc.2005.07.009.
9
Treatment of infections associated with surgical implants.
N Engl J Med. 2004 Apr 1;350(14):1422-9. doi: 10.1056/NEJMra035415.
10
CONTROL OF CELL BEHAVIOR: TOPOLOGICAL FACTORS.
J Natl Cancer Inst. 1964 Jul;33:15-26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验