Suppr超能文献

使用推算的单核苷酸多态性对多个连续性性状进行全基因组关联测试。

Genome-wide association test of multiple continuous traits using imputed SNPs.

作者信息

Wu Baolin, Pankow James S

机构信息

Division of Biostatistics, University of Minnesota.

Division of Epidemiology and Community Health School of Public Health, University of Minnesota.

出版信息

Stat Interface. 2017;10(3):379-386. doi: 10.4310/SII.2017.v10.n3.a2.

Abstract

More and more large cohort studies have conducted or are conducting genome-wide association studies (GWAS) to reveal the genetic components of many complex human diseases. These large cohort studies often collected a broad array of correlated phenotypes that reflect common physiological processes. By jointly analyzing these correlated traits, we can gain more power by aggregating multiple weak effects and shed light on the mechanisms underlying complex human diseases. The majority of existing multi-trait association test methods are based on jointly modeling the multivariate traits conditional on the genotype as covariate, and can readily accommodate the imputed SNPs by using their imputed dosage as a covariate. An alternative class of multi-trait association tests is based on the inverted regression, which models the distribution of genotypes conditional on the covariate and multivariate traits, and has been shown to have competitive performance. To our knowledge, all existing inverted regression approaches have implicitly used the "best-guess" genotypes, which is not efficient and known to lead to dramatic power loss, and there have not been any proposed methods of incorporating imputation uncertainty into inverted regressions. In this work, we propose a general and efficient framework that can account for the imputation uncertainty to further improve the association test power of inverted regression models for imputed SNPs. We demonstrate through extensive numerical studies that the proposed method has competitive performance. We further illustrate its usefulness by application to association test of diabetes-related glycemic traits in the Atherosclerosis Risk in Communities (ARIC) Study.

摘要

越来越多的大型队列研究已经开展或正在开展全基因组关联研究(GWAS),以揭示许多复杂人类疾病的遗传成分。这些大型队列研究通常收集了反映常见生理过程的广泛相关表型。通过联合分析这些相关性状,我们可以通过聚合多个微弱效应获得更强的检验效能,并深入了解复杂人类疾病的潜在机制。现有的大多数多性状关联检验方法基于以基因型作为协变量对多变量性状进行联合建模,并且可以通过将插补单核苷酸多态性(SNP)的插补剂量用作协变量来轻松纳入插补的SNP。另一类多性状关联检验基于逆回归,它对以协变量和多变量性状为条件的基因型分布进行建模,并且已被证明具有竞争力。据我们所知,所有现有的逆回归方法都隐含地使用了“最佳猜测”基因型,这效率不高且已知会导致检验效能大幅损失,并且尚未有任何将插补不确定性纳入逆回归的方法被提出。在这项工作中,我们提出了一个通用且有效的框架,该框架可以考虑插补不确定性,以进一步提高针对插补SNP的逆回归模型的关联检验效能。我们通过广泛的数值研究证明,所提出的方法具有竞争力。我们通过将其应用于社区动脉粥样硬化风险(ARIC)研究中与糖尿病相关的血糖性状的关联检验,进一步说明了其有用性。

相似文献

3
Fast and Accurate Genome-Wide Association Test of Multiple Quantitative Traits.多个数量性状的快速准确全基因组关联测试
Comput Math Methods Med. 2018 Mar 18;2018:2564531. doi: 10.1155/2018/2564531. eCollection 2018.

本文引用的文献

3
Canonical correlation analysis for gene-based pleiotropy discovery.用于基于基因的多效性发现的典型相关分析。
PLoS Comput Biol. 2014 Oct 16;10(10):e1003876. doi: 10.1371/journal.pcbi.1003876. eCollection 2014 Oct.
6
Pleiotropy in complex traits: challenges and strategies.复杂性状中的多效性:挑战与策略。
Nat Rev Genet. 2013 Jul;14(7):483-95. doi: 10.1038/nrg3461. Epub 2013 Jun 11.
9
Genetic association test for multiple traits at gene level.基因水平多性状的遗传关联检验。
Genet Epidemiol. 2013 Jan;37(1):122-9. doi: 10.1002/gepi.21688. Epub 2012 Oct 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验