Suppr超能文献

一种在大规模基因组学研究中用于关联测试的多变量性状的通用框架。

A general framework for association tests with multivariate traits in large-scale genomics studies.

机构信息

Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.

出版信息

Genet Epidemiol. 2013 Dec;37(8):759-67. doi: 10.1002/gepi.21759. Epub 2013 Nov 5.

Abstract

Genetic association studies often collect data on multiple traits that are correlated. Discovery of genetic variants influencing multiple traits can lead to better understanding of the etiology of complex human diseases. Conventional univariate association tests may miss variants that have weak or moderate effects on individual traits. We propose several multivariate test statistics to complement univariate tests. Our framework covers both studies of unrelated individuals and family studies and allows any type/mixture of traits. We relate the marginal distributions of multivariate traits to genetic variants and covariates through generalized linear models without modeling the dependence among the traits or family members. We construct score-type statistics, which are computationally fast and numerically stable even in the presence of covariates and which can be combined efficiently across studies with different designs and arbitrary patterns of missing data. We compare the power of the test statistics both theoretically and empirically. We provide a strategy to determine genome-wide significance that properly accounts for the linkage disequilibrium (LD) of genetic variants. The application of the new methods to the meta-analysis of five major cardiovascular cohort studies identifies a new locus (HSCB) that is pleiotropic for the four traits analyzed.

摘要

遗传关联研究通常会收集多个相关性状的数据。发现影响多个性状的遗传变异可以帮助更好地理解复杂人类疾病的病因。传统的单变量关联检验可能会遗漏对单个性状具有弱或中等影响的变异。我们提出了几种多元检验统计量来补充单变量检验。我们的框架涵盖了无关个体研究和家族研究,并允许任何类型/混合的性状。我们通过广义线性模型将多元性状的边缘分布与遗传变异和协变量联系起来,而无需对性状或家庭成员之间的相关性进行建模。我们构建了得分型统计量,即使在存在协变量的情况下,这些统计量在计算上也很快,数值上也很稳定,并且可以有效地在具有不同设计和任意缺失数据模式的研究中进行组合。我们从理论和经验上比较了检验统计量的功效。我们提供了一种确定全基因组显著性的策略,该策略可以正确考虑遗传变异的连锁不平衡 (LD)。新方法在对五个主要心血管队列研究的荟萃分析中的应用确定了一个新的位点 (HSCB),该位点对分析的四个性状具有多效性。

相似文献

1
A general framework for association tests with multivariate traits in large-scale genomics studies.
Genet Epidemiol. 2013 Dec;37(8):759-67. doi: 10.1002/gepi.21759. Epub 2013 Nov 5.
2
Functional linear models for association analysis of quantitative traits.
Genet Epidemiol. 2013 Nov;37(7):726-42. doi: 10.1002/gepi.21757.
3
Bivariate association analysis for quantitative traits using generalized estimation equation.
J Genet Genomics. 2009 Dec;36(12):733-43. doi: 10.1016/S1673-8527(08)60166-6.
4
Testing Genetic Pleiotropy with GWAS Summary Statistics for Marginal and Conditional Analyses.
Genetics. 2017 Dec;207(4):1285-1299. doi: 10.1534/genetics.117.300347. Epub 2017 Oct 2.
5
Pleiotropy analysis of quantitative traits at gene level by multivariate functional linear models.
Genet Epidemiol. 2015 May;39(4):259-75. doi: 10.1002/gepi.21895. Epub 2015 Mar 23.
6
PLEIO: a method to map and interpret pleiotropic loci with GWAS summary statistics.
Am J Hum Genet. 2021 Jan 7;108(1):36-48. doi: 10.1016/j.ajhg.2020.11.017. Epub 2020 Dec 21.
7
Local Genetic Correlation Gives Insights into the Shared Genetic Architecture of Complex Traits.
Am J Hum Genet. 2017 Nov 2;101(5):737-751. doi: 10.1016/j.ajhg.2017.09.022.
8
Modeling and testing for joint association using a genetic random field model.
Biometrics. 2014 Sep;70(3):471-9. doi: 10.1111/biom.12160. Epub 2014 Mar 13.
9
Multi-resolution localization of causal variants across the genome.
Nat Commun. 2020 Feb 27;11(1):1093. doi: 10.1038/s41467-020-14791-2.
10
Pleiotropy informed adaptive association test of multiple traits using genome-wide association study summary data.
Biometrics. 2019 Dec;75(4):1076-1085. doi: 10.1111/biom.13076. Epub 2019 Aug 2.

引用本文的文献

1
Bivariate genome-wide association study of circulating fibrinogen and C-reactive protein levels.
J Thromb Haemost. 2024 Dec;22(12):3448-3459. doi: 10.1016/j.jtha.2024.08.021. Epub 2024 Sep 17.
2
An adaptive and robust method for multi-trait analysis of genome-wide association studies using summary statistics.
Eur J Hum Genet. 2024 Jun;32(6):681-690. doi: 10.1038/s41431-023-01389-7. Epub 2023 May 26.
3
Statistical Inference for High-Dimensional Pathway Analysis with Multiple Responses.
Comput Stat Data Anal. 2022 May;169. doi: 10.1016/j.csda.2021.107418. Epub 2022 Jan 13.
5
Disease-Associated Risk Variants in Are Associated with Tumor-Infiltrating Lymphocyte Presence in Primary Melanomas in the Population-Based GEM Study.
Cancer Epidemiol Biomarkers Prev. 2021 Dec;30(12):2309-2316. doi: 10.1158/1055-9965.EPI-21-0686. Epub 2021 Oct 4.
7
Multi-trait Genome-Wide Analyses of the Brain Imaging Phenotypes in UK Biobank.
Genetics. 2020 Aug;215(4):947-958. doi: 10.1534/genetics.120.303242. Epub 2020 Jun 15.
8
Genome-Wide Gene-Based Multi-Trait Analysis.
Front Genet. 2020 May 19;11:437. doi: 10.3389/fgene.2020.00437. eCollection 2020.
9
Multi-trait analysis of rare-variant association summary statistics using MTAR.
Nat Commun. 2020 Jun 5;11(1):2850. doi: 10.1038/s41467-020-16591-0.
10
A Geometric Perspective on the Power of Principal Component Association Tests in Multiple Phenotype Studies.
J Am Stat Assoc. 2019;114(527):975-990. doi: 10.1080/01621459.2018.1513363. Epub 2019 Feb 26.

本文引用的文献

1
TATES: efficient multivariate genotype-phenotype analysis for genome-wide association studies.
PLoS Genet. 2013;9(1):e1003235. doi: 10.1371/journal.pgen.1003235. Epub 2013 Jan 24.
2
The many faces of pleiotropy.
Trends Genet. 2013 Feb;29(2):66-73. doi: 10.1016/j.tig.2012.10.010. Epub 2012 Nov 7.
3
Can genetic pleiotropy replicate common clinical constellations of cardiovascular disease and risk?
PLoS One. 2012;7(9):e46419. doi: 10.1371/journal.pone.0046419. Epub 2012 Sep 28.
4
Multivariate phenotype association analysis by marker-set kernel machine regression.
Genet Epidemiol. 2012 Nov;36(7):686-95. doi: 10.1002/gepi.21663. Epub 2012 Aug 16.
5
Pre-diabetes, metabolic syndrome, and cardiovascular risk.
J Am Coll Cardiol. 2012 Feb 14;59(7):635-43. doi: 10.1016/j.jacc.2011.08.080.
6
Abundant pleiotropy in human complex diseases and traits.
Am J Hum Genet. 2011 Nov 11;89(5):607-18. doi: 10.1016/j.ajhg.2011.10.004.
7
A phenomics-based strategy identifies loci on APOC1, BRAP, and PLCG1 associated with metabolic syndrome phenotype domains.
PLoS Genet. 2011 Oct;7(10):e1002322. doi: 10.1371/journal.pgen.1002322. Epub 2011 Oct 13.
8
9
A general framework for detecting disease associations with rare variants in sequencing studies.
Am J Hum Genet. 2011 Sep 9;89(3):354-67. doi: 10.1016/j.ajhg.2011.07.015. Epub 2011 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验