Departament d'Enginyeria Química, Universitat Rovira i Virgili , Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain.
Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili , Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain.
Anal Chem. 2017 Mar 21;89(6):3474-3482. doi: 10.1021/acs.analchem.6b04512. Epub 2017 Mar 3.
Structural annotation of metabolites relies mainly on tandem mass spectrometry (MS/MS) analysis. However, approximately 90% of the known metabolites reported in metabolomic databases do not have annotated spectral data from standards. This situation has fostered the development of computational tools that predict fragmentation patterns in silico and compare these to experimental MS/MS spectra. However, because such methods require the molecular structure of the detected compound to be available for the algorithm, the identification of novel metabolites in organisms relevant for biotechnological and medical applications remains a challenge. Here, we present iMet, a computational tool that facilitates structural annotation of metabolites not described in databases. iMet uses MS/MS spectra and the exact mass of an unknown metabolite to identify metabolites in a reference database that are structurally similar to the unknown metabolite. The algorithm also suggests the chemical transformation that converts the known metabolites into the unknown one. As a proxy for the structural annotation of novel metabolites, we tested 148 metabolites following a leave-one-out cross-validation procedure or by using MS/MS spectra experimentally obtained in our laboratory. We show that for 89% of the 148 metabolites at least one of the top four matches identified by iMet enables the proper annotation of the unknown metabolites. To further validate iMet, we tested 31 metabolites proposed in the 2012-16 CASMI challenges. iMet is freely available at http://imet.seeslab.net .
代谢物的结构注释主要依赖于串联质谱 (MS/MS) 分析。然而,代谢组学数据库中约有 90%的已知代谢物没有标准的注释光谱数据。这种情况促进了计算工具的发展,这些工具可以在计算机上预测碎片模式,并将其与实验 MS/MS 光谱进行比较。然而,由于此类方法需要检测到的化合物的分子结构可供算法使用,因此鉴定生物技术和医学应用相关生物体内的新型代谢物仍然是一个挑战。在这里,我们介绍了 iMet,这是一种有助于注释数据库中未描述的代谢物的计算工具。iMet 使用 MS/MS 光谱和未知代谢物的精确质量来识别参考数据库中与未知代谢物结构相似的代谢物。该算法还提出了将已知代谢物转化为未知代谢物的化学转化。作为对新型代谢物结构注释的代理,我们通过使用 MS/MS 光谱对 148 种代谢物进行了一次留一交叉验证程序或实验进行测试。我们表明,对于 148 种代谢物中的 89%,iMet 至少可以识别出前四种匹配中的一种,从而可以正确注释未知代谢物。为了进一步验证 iMet,我们测试了 2012-16 年 CASMI 挑战赛中提出的 31 种代谢物。iMet 可在 http://imet.seeslab.net 上免费获得。