Chen Zhaoyuan, Wang Xinhui, Yang Fan, Hu Qingqing, Tong Huichun, Dong Xiuzhu
From the State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China.
School of Life Sciences, University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China, and.
J Biol Chem. 2017 Mar 31;292(13):5519-5531. doi: 10.1074/jbc.M116.764126. Epub 2017 Feb 21.
Manganese contributes to anti-oxidative stress particularly in catalase-devoid bacteria, and DtxR family metalloregulators, through sensing cellular Mn content, regulate its homeostasis. Here, we show that metalloregulator MntR (So-MntR) functions dually as Mn and HO sensors in mediating HO resistance by an oral streptococcus. HO disrupted So-MntR binding to Mn transporter promoter and induced disulfide-linked dimerization of the protein. Mass spectrometry identified Cys-11/Cys-156 and Cys-11/Cys-11 disulfide-linked peptides in HO-treated So-MntR. Site mutagenesis of Cys-11 and Cys-156 and particularly Cys-11 abolished HO-induced disulfide-linked dimers and weakened HO damage on So-MntR binding, indicating that HO inactivates So-MntR via disulfide-linked dimerization. So-MntR C123S mutant was extremely sensitive to HO oxidization in dimerization/oligomerization, probably because the mutagenesis caused a conformational change that facilitates Cys-11/Cys-156 disulfide linkage. Intermolecular Cys-11/Cys-11 disulfide was detected in C123S/C156S double mutant. Redox Western blot detected So-MntR oligomers in air-exposed cells but remarkably decreased upon HO pulsing, suggesting a proteolysis of the disulfide-linked So-MntR oligomers. Remarkably, elevated C11S and C156S but much lower C123S proteins were detected in HO-pulsed cells, confirming Cys-11 and Cys-156 contributed to HO-induced oligomerization and degradation. Accordingly, in the C11S and C156S mutants, expression of and cellular Mn decreased, but HO susceptibility increased. In the C123S mutant, increased expression, cellular Mn content, and manganese-mediated HO survival were determined. Given the wide distribution of Cys-11 in streptococcal DtxR-like metalloregulators, the disclosed redox regulatory function and mechanism of So-MntR can be employed by the DtxR family proteins in bacterial resistance to oxidative stress.
锰尤其在缺乏过氧化氢酶的细菌中有助于抗氧化应激,而DtxR家族金属调节蛋白通过感知细胞内锰含量来调节其体内平衡。在此,我们表明金属调节蛋白MntR(So-MntR)在介导口腔链球菌对过氧化氢的抗性中作为锰和过氧化氢传感器发挥双重作用。过氧化氢破坏了So-MntR与锰转运体启动子的结合,并诱导该蛋白形成二硫键连接的二聚体。质谱分析在过氧化氢处理的So-MntR中鉴定出Cys-11/Cys-156和Cys-11/Cys-11二硫键连接的肽段。对Cys-11和Cys-156进行位点诱变,特别是对Cys-11进行诱变,消除了过氧化氢诱导的二硫键连接的二聚体,并削弱了过氧化氢对So-MntR结合的损伤,表明过氧化氢通过二硫键连接的二聚化使So-MntR失活。So-MntR C123S突变体在二聚化/寡聚化过程中对过氧化氢氧化极其敏感,可能是因为诱变导致构象变化从而促进了Cys-11/Cys-156二硫键的形成。在C123S/C156S双突变体中检测到分子间Cys-11/Cys-11二硫键。氧化还原蛋白质印迹法在暴露于空气中的细胞中检测到So-MntR寡聚体,但在过氧化氢脉冲处理后显著减少,表明二硫键连接的So-MntR寡聚体发生了蛋白水解。值得注意的是,在过氧化氢脉冲处理的细胞中检测到C11S和C156S蛋白水平升高,但C123S蛋白水平低得多,证实Cys-11和Cys-156促成了过氧化氢诱导的寡聚化和降解。因此,在C11S和C156S突变体中,[相关基因]的表达和细胞内锰含量降低,但对过氧化氢的敏感性增加。在C123S突变体中,[相关基因]表达增加、细胞内锰含量增加以及锰介导的过氧化氢存活能力增强。鉴于Cys-11在链球菌DtxR样金属调节蛋白中广泛分布,所揭示的So-MntR的氧化还原调节功能和机制可被DtxR家族蛋白用于细菌对氧化应激的抗性。