Suppr超能文献

相似文献

1
PON-P and PON-P2 predictor performance in CAGI challenges: Lessons learned.
Hum Mutat. 2017 Sep;38(9):1085-1091. doi: 10.1002/humu.23199. Epub 2017 May 2.
2
Are machine learning based methods suited to address complex biological problems? Lessons from CAGI-5 challenges.
Hum Mutat. 2019 Sep;40(9):1455-1462. doi: 10.1002/humu.23784. Epub 2019 Jun 18.
3
Reports from the fifth edition of CAGI: The Critical Assessment of Genome Interpretation.
Hum Mutat. 2019 Sep;40(9):1197-1201. doi: 10.1002/humu.23876. Epub 2019 Aug 26.
4
Performance of in silico tools for the evaluation of p16INK4a (CDKN2A) variants in CAGI.
Hum Mutat. 2017 Sep;38(9):1042-1050. doi: 10.1002/humu.23235. Epub 2017 May 16.
7
Performance of computational methods for the evaluation of pericentriolar material 1 missense variants in CAGI-5.
Hum Mutat. 2019 Sep;40(9):1474-1485. doi: 10.1002/humu.23856. Epub 2019 Aug 17.
8
What went wrong with variant effect predictor performance for the PCM1 challenge.
Hum Mutat. 2019 Sep;40(9):1486-1494. doi: 10.1002/humu.23832. Epub 2019 Jul 3.
9
Missense variant pathogenicity predictors generalize well across a range of function-specific prediction challenges.
Hum Mutat. 2017 Sep;38(9):1092-1108. doi: 10.1002/humu.23258. Epub 2017 Jun 12.
10
Assessing predictions of the impact of variants on splicing in CAGI5.
Hum Mutat. 2019 Sep;40(9):1215-1224. doi: 10.1002/humu.23869. Epub 2019 Aug 19.

引用本文的文献

2
Variation benchmark datasets: update, criteria, quality and applications.
Database (Oxford). 2020 Jan 1;2020. doi: 10.1093/database/baz117.
3
Reports from CAGI: The Critical Assessment of Genome Interpretation.
Hum Mutat. 2017 Sep;38(9):1039-1041. doi: 10.1002/humu.23290.

本文引用的文献

1
Predicting Severity of Disease-Causing Variants.
Hum Mutat. 2017 Apr;38(4):357-364. doi: 10.1002/humu.23173. Epub 2017 Jan 24.
2
How to Define Pathogenicity, Health, and Disease?
Hum Mutat. 2017 Feb;38(2):129-136. doi: 10.1002/humu.23144. Epub 2016 Dec 6.
3
Computational assessment of feature combinations for pathogenic variant prediction.
Mol Genet Genomic Med. 2016 Mar 14;4(4):431-46. doi: 10.1002/mgg3.214. eCollection 2016 Jul.
4
Crowdsourcing biomedical research: leveraging communities as innovation engines.
Nat Rev Genet. 2016 Jul 15;17(8):470-86. doi: 10.1038/nrg.2016.69.
5
The Complementarity Between Protein-Specific and General Pathogenicity Predictors for Amino Acid Substitutions.
Hum Mutat. 2016 Oct;37(10):1013-24. doi: 10.1002/humu.23048. Epub 2016 Aug 8.
6
Challenges: Crowdsourced solutions.
Nature. 2016 May 12;533(7602):S62-4. doi: 10.1038/533S62a.
7
PON-Sol: prediction of effects of amino acid substitutions on protein solubility.
Bioinformatics. 2016 Jul 1;32(13):2032-4. doi: 10.1093/bioinformatics/btw066. Epub 2016 Feb 19.
8
Variation Interpretation Predictors: Principles, Types, Performance, and Choice.
Hum Mutat. 2016 Jun;37(6):579-97. doi: 10.1002/humu.22987. Epub 2016 Apr 15.
9
Human Variome Project Quality Assessment Criteria for Variation Databases.
Hum Mutat. 2016 Jun;37(6):549-58. doi: 10.1002/humu.22976. Epub 2016 Mar 21.
10
PON-mt-tRNA: a multifactorial probability-based method for classification of mitochondrial tRNA variations.
Nucleic Acids Res. 2016 Mar 18;44(5):2020-7. doi: 10.1093/nar/gkw046. Epub 2016 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验