Suppr超能文献

用于评估CAGI中p16INK4a(CDKN2A)变体的计算机工具的性能

Performance of in silico tools for the evaluation of p16INK4a (CDKN2A) variants in CAGI.

作者信息

Carraro Marco, Minervini Giovanni, Giollo Manuel, Bromberg Yana, Capriotti Emidio, Casadio Rita, Dunbrack Roland, Elefanti Lisa, Fariselli Pietro, Ferrari Carlo, Gough Julian, Katsonis Panagiotis, Leonardi Emanuela, Lichtarge Olivier, Menin Chiara, Martelli Pier Luigi, Niroula Abhishek, Pal Lipika R, Repo Susanna, Scaini Maria Chiara, Vihinen Mauno, Wei Qiong, Xu Qifang, Yang Yuedong, Yin Yizhou, Zaucha Jan, Zhao Huiying, Zhou Yaoqi, Brenner Steven E, Moult John, Tosatto Silvio C E

机构信息

Department of Biomedical Sciences, University of Padova, Padova, Italy.

Department of Information Engineering, University of Padova, Padova, Italy.

出版信息

Hum Mutat. 2017 Sep;38(9):1042-1050. doi: 10.1002/humu.23235. Epub 2017 May 16.

Abstract

Correct phenotypic interpretation of variants of unknown significance for cancer-associated genes is a diagnostic challenge as genetic screenings gain in popularity in the next-generation sequencing era. The Critical Assessment of Genome Interpretation (CAGI) experiment aims to test and define the state of the art of genotype-phenotype interpretation. Here, we present the assessment of the CAGI p16INK4a challenge. Participants were asked to predict the effect on cellular proliferation of 10 variants for the p16INK4a tumor suppressor, a cyclin-dependent kinase inhibitor encoded by the CDKN2A gene. Twenty-two pathogenicity predictors were assessed with a variety of accuracy measures for reliability in a medical context. Different assessment measures were combined in an overall ranking to provide more robust results. The R scripts used for assessment are publicly available from a GitHub repository for future use in similar assessment exercises. Despite a limited test-set size, our findings show a variety of results, with some methods performing significantly better. Methods combining different strategies frequently outperform simpler approaches. The best predictor, Yang&Zhou lab, uses a machine learning method combining an empirical energy function measuring protein stability with an evolutionary conservation term. The p16INK4a challenge highlights how subtle structural effects can neutralize otherwise deleterious variants.

摘要

在新一代测序时代,随着基因筛查越来越普及,对癌症相关基因意义未明的变异进行正确的表型解读是一项诊断挑战。基因组解读关键评估(CAGI)实验旨在测试和界定基因型-表型解读的技术水平。在此,我们展示对CAGI p16INK4a挑战的评估。参与者被要求预测10种p16INK4a肿瘤抑制因子变异对细胞增殖的影响,p16INK4a是一种由CDKN2A基因编码的细胞周期蛋白依赖性激酶抑制剂。使用多种准确性指标评估了22种致病性预测工具在医学背景下的可靠性。不同的评估指标被综合到一个总体排名中,以提供更可靠的结果。用于评估的R脚本可从GitHub仓库公开获取,供未来类似评估活动使用。尽管测试集规模有限,但我们的研究结果显示了各种各样的结果,一些方法表现明显更好。结合不同策略的方法通常优于更简单的方法。最佳预测工具Yang&Zhou实验室使用了一种机器学习方法,该方法将测量蛋白质稳定性的经验能量函数与进化保守性项相结合。p16INK4a挑战凸显了微妙的结构效应如何能够抵消原本有害的变异。

相似文献

1
Performance of in silico tools for the evaluation of p16INK4a (CDKN2A) variants in CAGI.
Hum Mutat. 2017 Sep;38(9):1042-1050. doi: 10.1002/humu.23235. Epub 2017 May 16.
2
Are machine learning based methods suited to address complex biological problems? Lessons from CAGI-5 challenges.
Hum Mutat. 2019 Sep;40(9):1455-1462. doi: 10.1002/humu.23784. Epub 2019 Jun 18.
3
Performance of computational methods for the evaluation of pericentriolar material 1 missense variants in CAGI-5.
Hum Mutat. 2019 Sep;40(9):1474-1485. doi: 10.1002/humu.23856. Epub 2019 Aug 17.
4
PON-P and PON-P2 predictor performance in CAGI challenges: Lessons learned.
Hum Mutat. 2017 Sep;38(9):1085-1091. doi: 10.1002/humu.23199. Epub 2017 May 2.
5
Blind prediction of deleterious amino acid variations with SNPs&GO.
Hum Mutat. 2017 Sep;38(9):1064-1071. doi: 10.1002/humu.23179. Epub 2017 May 2.
9
BRCA1- and BRCA2-specific in silico tools for variant interpretation in the CAGI 5 ENIGMA challenge.
Hum Mutat. 2019 Sep;40(9):1593-1611. doi: 10.1002/humu.23802. Epub 2019 Jul 3.
10
Germline /P16INK4A mutations contribute to genetic determinism of sarcoma.
J Med Genet. 2017 Sep;54(9):607-612. doi: 10.1136/jmedgenet-2016-104402. Epub 2017 Jun 7.

引用本文的文献

4
Evaluation and Comparison of Multi-Omics Data Integration Methods for Subtyping of Cutaneous Melanoma.
Biomedicines. 2022 Dec 13;10(12):3240. doi: 10.3390/biomedicines10123240.
5
Genome interpretation using in silico predictors of variant impact.
Hum Genet. 2022 Oct;141(10):1549-1577. doi: 10.1007/s00439-022-02457-6. Epub 2022 Apr 30.
6
Key Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium Approach Improve Neoantigen Prediction.
Cell. 2020 Oct 29;183(3):818-834.e13. doi: 10.1016/j.cell.2020.09.015. Epub 2020 Oct 9.
8
In silico prediction of blood cholesterol levels from genotype data.
PLoS One. 2020 Feb 10;15(2):e0227191. doi: 10.1371/journal.pone.0227191. eCollection 2020.
9
Performance of computational methods for the evaluation of pericentriolar material 1 missense variants in CAGI-5.
Hum Mutat. 2019 Sep;40(9):1474-1485. doi: 10.1002/humu.23856. Epub 2019 Aug 17.
10
Reports from CAGI: The Critical Assessment of Genome Interpretation.
Hum Mutat. 2017 Sep;38(9):1039-1041. doi: 10.1002/humu.23290.

本文引用的文献

1
VHLdb: A database of von Hippel-Lindau protein interactors and mutations.
Sci Rep. 2016 Aug 11;6:31128. doi: 10.1038/srep31128.
2
Variation Interpretation Predictors: Principles, Types, Performance, and Choice.
Hum Mutat. 2016 Jun;37(6):579-97. doi: 10.1002/humu.22987. Epub 2016 Apr 15.
3
The CDKN2A/p16(INK) (4a) 5'UTR sequence and translational regulation: impact of novel variants predisposing to melanoma.
Pigment Cell Melanoma Res. 2016 Mar;29(2):210-21. doi: 10.1111/pcmr.12444. Epub 2015 Dec 17.
4
DBGC: A Database of Human Gastric Cancer.
PLoS One. 2015 Nov 13;10(11):e0142591. doi: 10.1371/journal.pone.0142591. eCollection 2015.
5
Correct machine learning on protein sequences: a peer-reviewing perspective.
Brief Bioinform. 2016 Sep;17(5):831-40. doi: 10.1093/bib/bbv082. Epub 2015 Sep 26.
6
Genetics of familial melanoma: 20 years after CDKN2A.
Pigment Cell Melanoma Res. 2015 Mar;28(2):148-60. doi: 10.1111/pcmr.12333. Epub 2015 Jan 5.
7
COSMIC: exploring the world's knowledge of somatic mutations in human cancer.
Nucleic Acids Res. 2015 Jan;43(Database issue):D805-11. doi: 10.1093/nar/gku1075. Epub 2014 Oct 29.
9
When a "disease-causing mutation" is not a pathogenic variant.
Clin Chem. 2014 May;60(5):711-3. doi: 10.1373/clinchem.2013.215947. Epub 2013 Dec 20.
10
WS-SNPs&GO: a web server for predicting the deleterious effect of human protein variants using functional annotation.
BMC Genomics. 2013;14 Suppl 3(Suppl 3):S6. doi: 10.1186/1471-2164-14-S3-S6. Epub 2013 May 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验