Suppr超能文献

对跨CAGI盲测的错义突变适应性效应的进化作用方程进行客观评估。

Objective assessment of the evolutionary action equation for the fitness effect of missense mutations across CAGI-blinded contests.

作者信息

Katsonis Panagiotis, Lichtarge Olivier

机构信息

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.

Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, Texas.

出版信息

Hum Mutat. 2017 Sep;38(9):1072-1084. doi: 10.1002/humu.23266. Epub 2017 Jun 21.

Abstract

A major challenge in genome interpretation is to estimate the fitness effect of coding variants of unknown significance (VUS). Labor, limited understanding of protein functions, and lack of assays generally limit direct experimental assessment of VUS, and make robust and accurate computational approaches a necessity. Often, however, algorithms that predict mutational effect disagree among themselves and with experimental data, slowing their adoption for clinical diagnostics. To objectively assess such methods, the Critical Assessment of Genome Interpretation (CAGI) community organizes contests to predict unpublished experimental data, available only to CAGI assessors. We review here the CAGI performance of evolutionary action (EA) predictions of mutational impact. EA models the fitness effect of coding mutations analytically, as a product of the gradient of the fitness landscape times the perturbation size. In practice, these terms are computed from phylogenetic considerations as the functional sensitivity of the mutated site and as the magnitude of amino acid substitution, respectively, and yield the percentage loss of wild-type activity. In five CAGI challenges, EA consistently performed on par or better than sophisticated machine learning approaches. This objective assessment suggests that a simple differential model of evolution can interpret the fitness effect of coding variations, opening diverse clinical applications.

摘要

基因组解读中的一个主要挑战是评估意义未明的编码变异(VUS)对适应性的影响。实验工作、对蛋白质功能的有限理解以及缺乏相关检测方法,通常限制了对VUS进行直接实验评估,因此需要强大而准确的计算方法。然而,预测突变效应的算法往往相互之间以及与实验数据存在分歧,这减缓了它们在临床诊断中的应用。为了客观评估此类方法,基因组解读关键评估(CAGI)社区组织竞赛来预测未发表的实验数据,这些数据仅对CAGI评估者可用。我们在此回顾CAGI中进化作用(EA)对突变影响预测的表现。EA通过分析编码突变的适应性效应,将其作为适应度景观梯度与扰动大小的乘积。实际上,这些项分别根据系统发育因素计算为突变位点的功能敏感性和氨基酸取代的幅度,并得出野生型活性的损失百分比。在CAGI的五项挑战中,EA的表现始终与复杂的机器学习方法相当或更优。这一客观评估表明,一个简单的进化差异模型可以解读编码变异的适应性效应,从而开启多种临床应用。

相似文献

2
CAGI5: Objective performance assessments of predictions based on the Evolutionary Action equation.
Hum Mutat. 2019 Sep;40(9):1436-1454. doi: 10.1002/humu.23873. Epub 2019 Aug 7.
4
Assessing predictions of the impact of variants on splicing in CAGI5.
Hum Mutat. 2019 Sep;40(9):1215-1224. doi: 10.1002/humu.23869. Epub 2019 Aug 19.
6
Reports from the fifth edition of CAGI: The Critical Assessment of Genome Interpretation.
Hum Mutat. 2019 Sep;40(9):1197-1201. doi: 10.1002/humu.23876. Epub 2019 Aug 26.
7
Assessing predictions on fitness effects of missense variants in calmodulin.
Hum Mutat. 2019 Sep;40(9):1463-1473. doi: 10.1002/humu.23857. Epub 2019 Sep 3.
8
Are machine learning based methods suited to address complex biological problems? Lessons from CAGI-5 challenges.
Hum Mutat. 2019 Sep;40(9):1455-1462. doi: 10.1002/humu.23784. Epub 2019 Jun 18.
9
PON-P and PON-P2 predictor performance in CAGI challenges: Lessons learned.
Hum Mutat. 2017 Sep;38(9):1085-1091. doi: 10.1002/humu.23199. Epub 2017 May 2.

引用本文的文献

2
Assessing predictions on fitness effects of missense variants in HMBS in CAGI6.
Hum Genet. 2025 Mar;144(2-3):173-189. doi: 10.1007/s00439-024-02680-3. Epub 2024 Aug 7.
3
QAFI: a novel method for quantitative estimation of missense variant impact using protein-specific predictors and ensemble learning.
Hum Genet. 2025 Mar;144(2-3):191-208. doi: 10.1007/s00439-024-02692-z. Epub 2024 Jul 24.
5
Variants in ZFX are associated with an X-linked neurodevelopmental disorder with recurrent facial gestalt.
Am J Hum Genet. 2024 Mar 7;111(3):487-508. doi: 10.1016/j.ajhg.2024.01.007. Epub 2024 Feb 6.
6
Functional variants identify sex-specific genes and pathways in Alzheimer's Disease.
Nat Commun. 2023 May 13;14(1):2765. doi: 10.1038/s41467-023-38374-z.
7
Identification of risk genes for Alzheimer's disease by gene embedding.
Cell Genom. 2022 Sep 14;2(9). doi: 10.1016/j.xgen.2022.100162. Epub 2022 Jul 26.
8
Genome interpretation using in silico predictors of variant impact.
Hum Genet. 2022 Oct;141(10):1549-1577. doi: 10.1007/s00439-022-02457-6. Epub 2022 Apr 30.
10
A general calculus of fitness landscapes finds genes under selection in cancers.
Genome Res. 2022 May;32(5):916-929. doi: 10.1101/gr.275811.121. Epub 2022 Mar 17.

本文引用的文献

1
Predicting phenotype from genotype: Improving accuracy through more robust experimental and computational modeling.
Hum Mutat. 2017 May;38(5):569-580. doi: 10.1002/humu.23193. Epub 2017 Feb 28.
2
Analysis of protein-coding genetic variation in 60,706 humans.
Nature. 2016 Aug 18;536(7616):285-91. doi: 10.1038/nature19057.
5
Comparison of predicted and actual consequences of missense mutations.
Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):E5189-98. doi: 10.1073/pnas.1511585112. Epub 2015 Aug 12.
6
INPS: predicting the impact of non-synonymous variations on protein stability from sequence.
Bioinformatics. 2015 Sep 1;31(17):2816-21. doi: 10.1093/bioinformatics/btv291. Epub 2015 May 7.
7
Variability in pathogenicity prediction programs: impact on clinical diagnostics.
Mol Genet Genomic Med. 2015 Mar;3(2):99-110. doi: 10.1002/mgg3.116. Epub 2014 Dec 3.
8
Analysis of genetic variation and potential applications in genome-scale metabolic modeling.
Front Bioeng Biotechnol. 2015 Feb 16;3:13. doi: 10.3389/fbioe.2015.00013. eCollection 2015.
9
Evolutionary Action Score of TP53 Coding Variants Is Predictive of Platinum Response in Head and Neck Cancer Patients.
Cancer Res. 2015 Apr 1;75(7):1205-15. doi: 10.1158/0008-5472.CAN-14-2729. Epub 2015 Feb 17.
10
PON-P2: prediction method for fast and reliable identification of harmful variants.
PLoS One. 2015 Feb 3;10(2):e0117380. doi: 10.1371/journal.pone.0117380. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验