Suppr超能文献

个体特异性与多层自回归模型:总体和个体水平参数估计的准确性

Person-specific versus multilevel autoregressive models: Accuracy in parameter estimates at the population and individual levels.

作者信息

Liu Siwei

机构信息

Human Development and Family Studies, Department of Human Ecology, University of California, Davis, California, USA.

出版信息

Br J Math Stat Psychol. 2017 Nov;70(3):480-498. doi: 10.1111/bmsp.12096. Epub 2017 Feb 22.

Abstract

This paper compares the multilevel modelling (MLM) approach and the person-specific (PS) modelling approach in examining autoregressive (AR) relations with intensive longitudinal data. Two simulation studies are conducted to examine the influences of sample heterogeneity, time series length, sample size, and distribution of individual level AR coefficients on the accuracy of AR estimates, both at the population level and at the individual level. It is found that MLM generally outperforms the PS approach under two conditions: when the sample has a homogeneous AR pattern, namely, when all individuals in the sample are characterized by AR processes with the same order; and when the sample has heterogeneous AR patterns, but a multilevel model with a sufficiently high order (i.e., an order equal to or higher than the maximum order of individual AR patterns in the sample) is fitted and successfully converges. If a lower-order multilevel model is chosen for heterogeneous samples, the higher-order lagged effects are misrepresented, resulting in bias at the population level and larger prediction errors at the individual level. In these cases, the PS approach is preferable, given sufficient measurement occasions (T ≥ 50). In addition, sample size and distribution of individual level AR coefficients do not have a large impact on the results. Implications of these findings on model selection and research design are discussed.

摘要

本文比较了多层建模(MLM)方法和个体特定(PS)建模方法在利用密集纵向数据检验自回归(AR)关系方面的情况。进行了两项模拟研究,以考察样本异质性、时间序列长度、样本量以及个体水平AR系数的分布对总体水平和个体水平上AR估计准确性的影响。研究发现,在两种情况下MLM通常优于PS方法:当样本具有同质AR模式时,即当样本中的所有个体都具有相同阶数的AR过程时;以及当样本具有异质AR模式,但拟合了一个阶数足够高(即阶数等于或高于样本中个体AR模式的最大阶数)的多层模型且该模型成功收敛时。如果为异质样本选择了一个低阶多层模型,高阶滞后效应将被错误表征,从而在总体水平上导致偏差,在个体水平上导致更大的预测误差。在这些情况下,若有足够的测量次数(T≥50),PS方法更可取。此外,样本量和个体水平AR系数的分布对结果影响不大。本文讨论了这些发现对模型选择和研究设计的意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验