Research Group of Quantitative Psychology and Individual Differences, KU Leuven - University of Leuven, Leuven, Belgium.
Psychometrika. 2022 Jun;87(2):432-476. doi: 10.1007/s11336-021-09803-z. Epub 2021 Nov 1.
The use of multilevel VAR(1) models to unravel within-individual process dynamics is gaining momentum in psychological research. These models accommodate the structure of intensive longitudinal datasets in which repeated measurements are nested within individuals. They estimate within-individual auto- and cross-regressive relationships while incorporating and using information about the distributions of these effects across individuals. An important quality feature of the obtained estimates pertains to how well they generalize to unseen data. Bulteel and colleagues (Psychol Methods 23(4):740-756, 2018a) showed that this feature can be assessed through a cross-validation approach, yielding a predictive accuracy measure. In this article, we follow up on their results, by performing three simulation studies that allow to systematically study five factors that likely affect the predictive accuracy of multilevel VAR(1) models: (i) the number of measurement occasions per person, (ii) the number of persons, (iii) the number of variables, (iv) the contemporaneous collinearity between the variables, and (v) the distributional shape of the individual differences in the VAR(1) parameters (i.e., normal versus multimodal distributions). Simulation results show that pooling information across individuals and using multilevel techniques prevent overfitting. Also, we show that when variables are expected to show strong contemporaneous correlations, performing multilevel VAR(1) in a reduced variable space can be useful. Furthermore, results reveal that multilevel VAR(1) models with random effects have a better predictive performance than person-specific VAR(1) models when the sample includes groups of individuals that share similar dynamics.
使用多层 VAR(1) 模型来揭示个体内部的过程动态在心理学研究中越来越受欢迎。这些模型适应了密集纵向数据集的结构,其中重复测量嵌套在个体内部。它们估计个体内部的自回归和交叉回归关系,同时结合并使用关于这些效应在个体之间分布的信息。获得的估计值的一个重要质量特征涉及它们对未见数据的概括程度。Bulteel 及其同事(Psychol Methods 23(4):740-756, 2018a)表明,通过交叉验证方法可以评估此特征,从而得出预测准确性度量。在本文中,我们跟进他们的结果,通过进行三项模拟研究来系统研究五个可能影响多层 VAR(1) 模型预测准确性的因素:(i)每个人的测量次数,(ii)人数,(iii)变量数,(iv)变量之间的同期共线性,以及(v)VAR(1) 参数个体差异的分布形状(即正态分布与多峰分布)。模拟结果表明,跨个体汇总信息并使用多层技术可防止过拟合。此外,我们还表明,当变量预计显示出强烈的同期相关性时,在减少的变量空间中执行多层 VAR(1) 可能会很有用。此外,结果表明,当样本包括具有相似动态的个体组时,具有随机效应的多层 VAR(1) 模型比特定于人的 VAR(1) 模型具有更好的预测性能。